RUTGERS THE STATE UNIVERSITY OF NEW JERSEY

Maintenance and Costs of Green Infrastructure

www.water.rutgers.edu

Rain Garden/Bioretention System Maintenance

 Remove liter, weed, water, mulch, and trim

RUTGERS

- Inspect for sediment build up, the health of the vegetation and erosion
- Clean out and inspect outlets, inlets, overflow risers, etc.
- Keep inlets free and clear so water does not bypass the system

• Trees

RUTGERS

- Watering
- pruning
- Vegetation
 - Weeding
 - Mulching
 - Watering
 - pruning/cutback
 - landscape replacement

- General Maintenance
 - Frequency:

RUTGERS

- Annually
- Tools and supplies:
 - Trash bags, gloves, shovels
- Soil Amendment with organic matter:
 - Years 2 and 4
 - Apply 2 inches of compost into 2 inches of top soil
 - No contact with exposed roots or the truck of the tree/ shrub
- Keep weed whackers and lawn movers more than 2 feet from the trunk

- Pruning (improve the strength of plants, prevents pest problem, improves safety/ security for residents/visitors, reduces future maintenance)
 - Frequency:

RUTGERS

- Year one remove damaged and dead branches
- Year three correction of structural issues
- Tools and supplies:
 - Trash bags, gloves, saw, pruners, loopers

- Maintenance of Vegetation
 - Frequency:

RUTGERS

- Checking vegetation for damage caused by a lawnmower, string trimmers, edger, or other power equipment
- Weeding: early and often- 3x spring, 1x fall and summer
 - Pull weeds from there roots use tool if it is difficult
 - Avoid compacting the soil and other plants
 - Remove invasive plants
- Tools and supplies:
 - Trash bags, gloves, shovels, trowels, weed id guide

• Mulching

RUTGERS

- Frequency:
 - apply 2-3 inches of mulch in the spring
 - Keep mulch away from the stem of the plants
 - May need to remove of mix up old mulch that is already there
- Tools and supplies:
 - Trash bags, gloves, shovels, Hardwood mulch

• Watering:

RUTGERS

- Frequency:
 - 1 inch the first week installed
 - ½ inch the first 4-6 weeks of the growing season for years 2 and 3 and for drought in years 2 and 3
 - Water the roots not the leaves
 - Soil should be moist 2 -3 inches below grade
 - Properly used hoses are more efficient then sprinklers
- Tools and supplies:
 - Hose and water source
 - Gator bags

- Removal of dead vegetation:
 - Frequency:

RUTGERS

- 2x a year to prepare the bed for the winter (spring and fall)
- Tools and supplies:
 - Trash bags, gloves, gardening scissors, clippers
- Landscape Cutback:
 - Fall cleanup up includes cutting perennials back 4 inches above the ground
 - Some plants like iris shouldn't be cut back while they are still green

- Landscape Plant Replacement (Involves replacing dead, missing, dead or diseased plants)
 - Frequency:

RUTGERS

- Planting should be done in the spring or the fall
- Tools and supplies:
 - Trash bags, gloves, shovels, replacement plants

Costs for Rain Gardens / Bioretention Systems

Туре	Low Cost	High Cost	Project Range
Small systems (up to 200 sq. ft.)	\$5.00	\$10.00	\$1,000 - \$2,000
Large systems (up to 1,000 sq. ft.)	\$10.00	\$35.00	\$2,000 - \$35,000

Construction work to include:

- Excavation
- Disposal of excess soil
- Soil amendments
- Mulch
- Plants
- Stone
- Piping

Costs for Roadway Bioretention Systems

Туре	Low Cost	High Cost	Project Range
Roadway bioretention systems (up to 500 sq. ft.)	\$85.00	\$105.00	\$42,500 - \$52,500

Construction work for curb rain gardens, stormwater planters, and bump outs:

- Demolition of existing paving and curbing
- Excavation
- Disposal of excess soil
- Soil amendments
- Mulch

- Plants
- Stone
- Piping
- Curbing
- BEWARE: Costs for Traffic Control!!!

Costs for Enhanced Tree Pits

Туре	Low Cost	High Cost	Project Range
Tree Pit (each pit at 4'x8' or 4'x6' with tree)	\$2,500.00	\$3,000.00	\$2,500 - \$3,000

Construction work for enhanced tree pits:

- Demolition of existing paving and curbing
- Excavation
- Disposal of excess soil
- Soil amendments
- Stone
- Tree
- Tree grate

Cistern / Rain Barrel Maintenance

- Release the water in there before the next rain event
- Rain barrels, cisterns and downspouts should be inspected and cleaned regularly
- Seals on the infrastructure need to be inspected to prevent mosquito infestation
- Winterize

RUTGERS

Harvesting System

Cistern/ Rain Barrel Maintenance

- Cistern/Rain Barrel (provides supplemental water supply for irrigation and other nonpotable water use)
 - Frequency:

RUTGERS

- Annually release all the water before the winter
- Tools and supplies:
 - Trash bags, gloves, wrench
- Procedure:
 - Refer to guidance document in handout

Harvesting System

Costs for Rain Barrels & Cisterns

Туре	Low Cost	High Cost	Project Range
Residential rain barrel (50-75 gallons)	\$50.00	\$300.00	\$50 - \$300
Small Cistern (up to 100-600 gallons)	\$300.00	\$2,000.00	\$300 - \$2,000
Large Cistern (up to 5,000 gallons)	\$6,500	\$12,000	\$6,500 - \$12,000

Installation to include:

- Purchase and delivery of tank
- Placement of tank on stable foundation
- Connection of piping to roof drain (external)
- Installation of first-flush diverter
- Installation of overflow
- Providing supplemental electric pump (\$1,500 - \$2,000)

Planter Box Maintenance

- Apply mulch / stone
- Install plantings

RUTGERS

- Remove weeds
- Check/maintain inflow
- Keep overflow clear of debris
- Ensure proper drainage
- Winterize

Harvesting System

Costs for Downspout Planter Boxes

Туре	Low Cost	High Cost	Project Range
Residential planter box (each box up to 6 sq. ft.)	\$250.00	\$500.00	\$250 - \$500
Institutional planter boxes (larger systems over 6 sq. ft.)	\$500.00	\$8,000.00	\$500 - \$8,000

Construction work to include:

- Constructing free standing box
- Providing stable foundation
- Installing underdrain pipe
- Placement of stone and soil layers
- Piping connections to roof drains and overflow
- Plantings

Porous Pavement
 Vacuuming

- Porous Pavement
 Power Washing
- Porous Paver Maintenance (Restoring Aggregate)
- Winter Maintenance for Porous Pavement

- Permeable Pavement Vacuuming (process removes sediment which can lead to clogging of the porous surface which prevents infiltration of water)
 - Frequency:

RUTGERS

- Semi Annually for Porous Asphalt, Porous Concrete, Flexible Porous Pavement
- Annually for Porous Pavers
- Tools and supplies:
 - Porous pavement vacuum
 - Water source
 - Trash bags, gloves, safety cones, street broom

- Porous Pavement Power Washing (should be done if pavement is clogged; NEVER power wash porous pavers)
 - Frequency:

Storage System

- Once every three years
- Power wash after thorough vacuuming
- Perform task in the spring
- Tools and supplies:
 - Power washer
 - Water source
 - Trash bags, gloves, safety cones, street broom

Porous Pavers Maintenance

1) Inspect:

RUTGERS

- Look for damage to the surface of the porous pavement (clogs)
- Record observations in maintenance report log
- 2) Prepare Site:
 - Dispose of trash and debris
 - Sweep away any loose debris
- 3) Clean out clogged Voids
 - Use a manhole pick to clean out the voids till you are able to see clean aggregate

Porous Pavers Maintenance (restoring aggregate)

– Frequency:

RUTGERS

- When gravel infill is less then ½ inch of the paver surface
- Perform after vacuuming
- Tools and supplies:
 - Shovel, manhole pick, wheelbarrow
 - Cleaned washed small aggregate
 - Trash bags, gloves, safety cones, street broom

- Winter Maintenance for Permeable Pavements Procedures
 - Frequency:

RUTGERS

- As necessary following snowfall and/or icy conditions
- Tools and supplies:
 - Truck with snow plow
 - Salt
 - Hand shovel

Winter Maintenance for Porous Pavements Procedures

1) Inspect:

RUTGERS

- If location is no visible look at site plan to identify where its located
- Locate where obstacles are located like speed bumps, bushes, trees so the snowplow can be raised
- Record observations in maintenance report log
- 2) Plow Site:
 - Use a rubber plow blade
 - Plow 1" above the pavement to prevent hitting the plow on a edge or a paver and ripping it up
- 3) Storage of snow piles:
 - Don't store snow piles on top of porous pavement surfaces; move the snow piles on lawn or non porous pavement
- 4) Salting
 - Use in moderation
- 5) Record observations in maintenance report log and clean up

Costs for Permeable Pavements

Туре	Low Cost	High Cost	Project Range (1,000 sq. ft.)
Porous asphalt (per sq. ft.)	\$12.00	\$22.00	\$12,000 - \$22,000
Pervious concrete (per sq. ft.)	\$18.00	\$28.00	\$18,000 - \$28,000
Permeable pavers (per sq. ft.)	\$22.00	\$34.00	\$22,000 - \$34,000
Grass pavers (per sq. ft.)	\$16.00	\$18.00	\$16,000 - \$18,000

Installation to include:

- Demolition of existing pavement
- Excavation and disposal of existing soil
- Placement of stone reservoir layers
- Installation of under drain piping and cleanouts
- Paving materials

COMMON PROBLEMS

Issues and Concerns: Pedestrian Safety

- Obstructions to sidewalks
- Line of sight obstruction
- Tripping hazards
- Standing water (over 72 hours)
- Icing

Issues and Concerns: Vehicle Safety

 Branches/debris in roadway or parking area

- Lines of sight at intersections or parking areas
- Water overflow and icing in the roadway

Issues and Concerns: Sediment & Debris

- Trash accumulation
- Sediment accumulation
- Erosion

- Dumping
- Road salt and sand
- Bare soils

Issues and Concerns: Clogging

- Leaves and plant material
- Sediment
- Debris

- Ponding
- Filter screen or fabric
- Stone

Issues and Concerns: Ponding

- Standing water for more than 72 hours
- Saturated soils
- Plant loss

- Poor soil infiltration
- High groundwater
- Insufficient drain piping
- Too much water

Issues and Concerns: Winterizing

 Drain all piping, storage drums, and fixtures

- Clean all filters and screens
- Divert flow from storage tanks

Portland, OR: Costs per gallons managed (\$0.89-\$4.08)

Figure 2. Costs and Cumulative Volume of Stormwater Removed from the CSO System through Various Grey and Green Strategies (Green in Bold). Source: ECONorthwest, with data from City of Portland 2005

SOURCE: "Banking on Green," ASLA & American Rivers

Washington D.C.: Typical Construction Estimates

D.C. Water Green Infrastructure Cost Evaluation				
Green Infrastructure Practice	Cost	Unit		
Bioretention: Residential	\$5.00 - \$12.00	SF		
Bioretention: Commercial	\$15.00 - \$60.00	SF		
Pervious Pavement	\$2.00 - \$15.00	SF		
Soil System Detention: Suburban/Rural	\$0.10 - \$0.75	SF		
Soil System Detention: Urban	\$1.00 - \$5.00	SF		
Vegetated Swales	\$20,000 - \$30,000	Drainage Area (ac)		
Green Roofs: Extensive	\$8.00 - \$20.00	SF		
Green Roofs: Intensive	\$15.00 - \$50.00	SF		
Rainwater Harvesting: Rain Barrels	\$2.00 - \$4.00	Gal		
Rainwater Harvesting: Cistern	\$0.50 - \$4.00	Gal		
Rainwater Harvesting: Gray Water Systems	\$20.00 - \$30.00	Gal		
Blue Roof	\$5.00 - \$8.00	SF		
Filter Systems: Multichamber	\$70,000.00 - \$136,000.00	Drainage Area (ac)		
Filter Systems: Surface	\$25,000.00 - \$35,000.00	Drainage Area (ac)		
Filter Systems: Subsurface	\$20,000.00 - \$40,000.00	Drainage Area (ac)		
Filter Systems: Proprietary	\$24,000.00	Drainage Area (ac)		

Resources and References: Costs

Source	Title	Link	Notes
NRDC	Rooftops to Rivers II	http://www.nrdc.org/water/pollution/rooftopsii/files/rooftopstoriversII.p	Onondaga County, NY
NYC EP	NYC Green Infrastructure Plan	http://www.nyc.gov/html/dep/pdf/green_infrastructure/NYCGreenInfr astructurePlan_ExecutiveSummary.pdf	Contains NYC GI Costs
American Rivers, ASLA	Banking on Green	https://www.asla.org/uploadedFiles/CMS/Government_Affairs/Feder al_Government_Affairs/Banking%20on%20Green%20HighRes.pdf	Contains Portland GI Costs
CNT	The Value of Green Infrastructure	http://www.cnt.org/sites/default/files/publications/CNT_Value-of- Green-Infrastructure.pdf	Overview of GI BMP's. Case studies: Aurora Illinois, Chicago, Milwalki NYC, Philadelphia, Portland, Seattle
EPA	Green Infrastructure Implementation Strategy for the Town of Franklin, Massachusetts	http://www.epa.gov/sites/production/files/2015- 10/documents/franklin_report.pdf	Franklin, Massachusetts
NOAA	Green Infrastructure Options to Reduce Flooding	https://coast.noaa.gov/data/docs/digitalcoast/gi-econ.pdf	Storage Potential and Costs
EPA	The Economic Benefits of Green Infrastructure A Case Study of Lancaster, PA	http://www.floods.org/ace- files/NAI/July2015_IL/IL_NAI_Workshop_CNT_EPA_LancasterGICa seStudy.pdf	Lancaster, PA
UMD	The'Impact'and'Benefits'of'Green'Infrastr ucture'in' Stormwater'Financing'Programs	http://efc.umd.edu/assets/stormwater_financing_manual/10.2efc_sto rmwater_financing_manual_appendix_a.pdf_	Lancaster, PA
D.C. Water	Long Term Control P January 2014 Modification for Green Infrastructure	https://www.dcwater.com/education/gi_challenge_images/gi_public_ comment_draft.pdf	DC
Seattle, WA	Green Stormwater Infrastructure in Seattle	http://www.seattle.gov/Documents/Departments/OSE/GSI_Spreads_ v2_July_2015_WEB.pdf	Seattle, WA
	Economics and LID Practices	http://www.unh.edu/unhsc/sites/unh.edu.unhsc/files/docs/FTL_Chap ter3%20LR.pdf	

Resources and References: Maintenance

Caitlin Feehan: A Survey of Green Infrastructure Maintenance Programs in the United States

Available at: http://hixon.yale.edu/sites/default/files/files/fellows/paper/feehan_hixonpaper20131.pdf

Onondaga County, NY: Save the Rain Program Green Infrastructure

Maintenance Training

Available at:

RUTGERS

http://savetherain.us/wp-content/uploads/2012/03/MaintenanceTrainingBinder.pdf

Philadelphia, PA: Green City, Clean Waters Green Infrastructure

Maintenance Manual

Available at:

http://phillywatersheds.org/ltcpu/Green%20Infrastructure%20Maintenance%20Manual%20Development%20Proc ess%20Plan.pdf

Chesapeake Bay: Strategies to Improve Operations and Maintenance

of Green Infrastructure

Available at:

https://www.americanrivers.org/assets/pdfs/reports-and-publications/staying-green-strategies-improveoperations-and-maintenance.pdf

RUTGERS

Water Resources Program

Questions?

