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Objective
 How does implementation of green stormwater infrastructure at 
the watershed scale address watershed hydrology and urban 
flooding? 

 In the context of infrastructure planning and design, which is more 
consequential:  the increase in impervious area or climate change?
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Extreme Precipitation
Extreme precipitation events over most mid-latitude land masses and

over wet tropical regions will very likely become more intense and

more frequent as global mean surface temperature increases.
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IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
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Changing 
Trends

The frequency and intensity of heavy precipitation events has likely increased 
in North America and Europe.

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
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What About New Hampshire?
Numbers of days per year with rainfall - about the same

 Average daily rainfall - about the same 
 (mean =0.35 in = 8.9 mm; median = 0.2 in = 5.1 mm) 

 Daily rainfall value exceeded 90% of the days when it rains increased ~ 14%
 Extreme precipitation is increasing
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New Hampshire Extreme Precipitation
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Common “Design” Life for Our Structures

20 to 50 years (looking out to 2040 to 2060)
◦ Precipitation increase of ~10-30%
◦ Flood peak increase of ~10 – 80%
◦ Temperature increase of 1-2 degrees F

Present guidance in New Hampshire is to increase extreme precipitation 
estimates of today by 15% to account for the anticipated climate changes to 
extreme precipitation by the end of the century (2100)

8



Hydrology and Flooding
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More Frequent 
Floods?

Of the top 10 historic
floods on the
Oyster River, only one
was before 1970.  
Period of record 1934 
- 2021
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Date Flow (cfs)

4/16/2007 1320

10/21/1996 1160

5/14/2006 873

2/26/2010 864

9/11/1954 862

3/19/1983 709

2/27/1981 615

4/2/1973 610

4/6/1987 600

6/14/1998 595



Trend in Floods – Oyster River
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Oyster River Flood Series (1934 – 2019) 
LPIII Estimates

Return 
Period 
(years)

1934 -
1969

1934 -
1979

1934 -
1989

1934 -
1999

1934 -
2009

1934 -
2019

1970-
2019

2 296 290 301 304 307 296 300
10 521 520 544 581 625 609 664
25 623 631 665 734 821 813 941
50 693 711 754 853 984 988 1199

100 758 788 841 976 1160 1182 1507
% Increase 
in 100-year 
over 1969

- 4 11 29 53 56 99
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Annual (a) and annually 
computed log 10 mean (b), 
standard deviation (c), and 
skew (d) for the Oyster 
River annual peak flow 
series.  Red dots are a least-
squares-fitted trendline.
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Watershed Hydrology and GSI Methodology

Monitor hydrology of an urbanized watershed, calibrate a hydrologic 
numerical model for the monitored hydrology, then adjust the model 
to reflect various levels of GSI Implementation and the effects of GSI 
on hydrology and flood characteristics
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Common Terms
o GSI - Green Stormwater Infrastructure (bioretention, subsurface gravel wetland, etc.)

o BMP – Best Management Practice

o IC - Impervious Cover

o EIC – Effective Impervious Cover:  impervious cover unmanaged by GSI

o SWMM – Stormwater Management Model

o DEM – Digital Elevation Model

o LiDAR – Light Detection and Ranging
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Berry Brook Watershed
o 200-acre (81 ha) watershed in Dover, NH

o 0.9-mile (1.5 km) 1st order stream

o 2006 – Listed as impaired by EPA

o 2007 – Management Project

o Urbanized (30% EIC) prior to use of GSI
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Restoration Efforts
oDaylight 1,100 feet (335 m)of stream

o Restore 500 feet (152 m) of stream

o Create 1-acre (0.4 ha)of new wetland 
headwaters

o Add multiple GSI systems to reduce 
watershed EIC from 30% to 10%

17

Image from City of Dover & UNH, 2017 
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GSI Installations at Berry Brook

• 12 bioretention systems, 
• 1 tree filter, 
• 1 subsurface gravel wetland, 
• 3 grass-lined swales
• 2 subsurface gravel filters
• 1 infiltration trench system 
• 3 innovative filtering catch basin designs
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Model Scenarios and Comparison Variables
o Event-based model (2-year through 100-year events
o Long term model (10 years of precipitation)

o Watershed Modeling – Pre GSI (30% EIC) and Post GSI (10% EIC)
o Simulate reducing impervious cover (Pre GSI:  0% and 15% EIC)
o Simulate climate change (event-based, present precipitation, increase 15%)

o Compare and contrast impacts 
o Peak flow
o Time to peak flow
o Runoff depth
o Total runoff volume
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Software Selection - PCSWMM
o SRTC Calibration Tool - calibrate using parameter sensitivity

o Bulk edit capabilities - review all parameters at once

o Kinematic Wave Equation  - how water moves over the ground

o Green-Ampt Equation - how water infiltrates the ground

o Compatible with ArcMap - process data over geospatial area

o Compatible with SWMM - Stormwater management model supported by the EPA
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Initial Parameter Estimation
o Subcatchment Area – ArcMap
o Conduit Lengths - ArcMap
o Subcatchment Width – Longest Flowpath
o Elevations – 2011 LiDAR Survey 
o Subcatchment Slope – 2011 LiDAR Survey
o Impervious Cover – 2010 Survey
o Catch Basin Depths – Assumed to be 8 feet
o Conduit Roughness – EPA SWMM User’s Manual
o Soil Parameters - EPA SWMM User’s Manual, Web Soil Survey
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Impervious surface cover in 
the Berry Brook Watershed
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Model Development
PRE POST
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Model Calibration
o Hlas (2011 – Pre GSI) and Johnson (2017-2018 – Post GSI) Data

o UNH Morse Hall precipitation gage 7 miles  (11 km) from site

o Major calibration parameters:
o Subcatchment width
o Conduit roughness
o Conduit length
o Manning’s n

24



Event-Based Calibration
PRE-IMPROVEMENTS POST-IMPROVEMENTS

25

Rainfall: 0.23 inches (5.8 mm) Rainfall: 0.85 inches (21.6 mm)



Long-Term Analysis
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Precipitation
Atlas 14 Precipitation Data

Climate-Adjusted Precipitation Data
Storm 

Duration 2-yr 10-yr 50-yr 100-yr
1 hr 1.13 1.71 2.34 2.63

24 hr 3.71 5.95 8.38 9.51

Storm 
Duration 2-yr 10-yr 50-yr 100-yr

1 hr 0.98 1.49 2.04 2.28
24 hr 3.23 5.18 7.29 8.29
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The 
Models
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Pre GSI Watershed (30% EIC) Peak Flow 
Calibration
Event-Based
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Pre GSI Watershed (30% EIC) Hydrograph Volume 
Calibration



Post GSI Watershed (10% EIC) Peak Flow Calibration
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Post GSI Watershed (10% EIC) Hydrograph Volume 
Calibration
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Extreme Precipitation Event Analysis of the 
Berry Brook Watershed
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Example: Extreme Precipitation Events
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Percent Change in Runoff Depth, Total Flow, and Peak Flow Caused by 
GSI Implementation to 10% EIC in a 30% IC Watershed 
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GSI Effect on Peak Flows

Event Duration Rain (in)
Peak Flow (cfs) Time to Peak (hr)

Pre Post Change % Change Pre Post Change
2-yr 

storms
1 hr 0.98 22 13 9 -40.9% 0.78 1.08 38.5%

24 hr 3.23 34 27 7 -20.6% 12.05 12.45 3.3%
10-yr 
storms

1 hr 1.49 28 20 8 -28.6% 0.65 1.05 61.5%
24 hr 5.18 44 35 9 -20.5% 12.03 12.27 2.0%

50-yr 
storms

1 hr 2.04 35 25 9 -28.6% 0.60 1.05 75.0%
24 hr 7.29 55 45 10 -18.2% 12.02 12.22 1.7%

100-yr 
storms

1 hr 2.28 37 28 9 -24.3% 0.57 1.03 80.7%
24 hr 8.27 61 50 11 -18.0% 12.02 12.20 1.5%
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Percent Change Caused by Alteration to 
the Berry Brook Watershed
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Climate change is not as important an issue in flooding as impervious cover
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Extreme Precipitation Events- Conclusions
o Reduce IC to 15% without GSI
o Peak Flow reduced 43%
o Runoff depth reduced 30%

o Reduce IC to 0% without GSI
o Peak Flow reduced 68%
o Runoff depth reduced 58%

oIncrease Precipitation by 15% 
without GSI
oPeak Flow increased 11%
oRunoff depth increased 18%

oIncrease Precipitation by 15% 
with GSI
oPeak Flow increased 8%
oRunoff depth increased 17%

38

oGSI Implementation
oPeak Flow reduced 24%
oRunoff depth reduced 11%

o Reductions decrease with return period



Long-Term Analysis of the Pre-Improvements 
and Post-Improvements Watersheds
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Long-Term Analysis: Frequency-Duration 
Curves
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Long-Term Analysis: Annual Maximum 
Wet Weather Flows

Water Year

Maximum Flow (cfs) Decrease

Pre Post Peak Flow 
(cfs)

Peak Flow 
(%)

2000 21 11 9 45
2001 17 6 11 64
2002 21 9 12 58
2003 15 5 10 66
2004 23 16 7 32
2005 25 20 5 20
2006 22 15 6 29
2007 19 7 12 64
2008 26 24 1 5
2009 23 13 10 43
2010 25 22 3 10

o Average Decrease: 40%

o Median Annual Maximum 
Rainfall: 1.8 in
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Long-Term Analysis: Infiltration and 
Surface Runoff

Inches of Water Change Change
TypePre Post inches %

Total Rainfall 211 211 0 0 N/A
Infiltration 148 180 32 22 Increase

Surface Runoff Depth 58 29 29 50 Decrease
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GSI / BMP Implementation
o Extreme Precipitation Events
o Peak Flow reduced 24% - Reduction decreases with return period
o Runoff depth reduced 11% - Reduction decreases with return period

o Long-Term Analysis – Wet Weather Flows
o 40% decrease in peak flow
o 22% increase in infiltration
o 50% decrease in storm runoff depth
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Research Questions
o What are the effects of green stormwater infrastructure on reducing flooding in urban areas? 

GSI reduces peak flow and total runoff depth in extreme precipitation events and in a long-
term analysis.

o Which is more extreme: effect on flooding caused by impervious cover or the effect on flooding 
expected by climate change?

Reducing impervious cover in the watershed reduces peak flow and total runoff depth in 
extreme precipitation events, with more reduction in more frequent events. Decreasing IC or 
EIC has a greater impact than climate change an urbanized with or without GSI.
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