

ACKNOWLEDGEMENTS

This document has been prepared by the Rutgers Cooperative Extension Water Resources Program with funding provided by Surdna Foundation and the New Jersey Agricultural Experiment Station. This work is a feasibility assessment of Gloucester City with regard to green infrastructure opportunities in the area.

RuTGERS
New Jersey Agricultura Experiment Station

TABLE OF CONTENTS

$4 . \quad$ Identified Projects

QR. Appendix A: Community Engagement \& Education
97 Appendix B: Maintenance Procedures

GLOSSARY OF GREEN INFRASTRUCTURE TERMINOLOGY

1 Best management practice (BMP)
(2) Combined sewer overflow (CSO)

3 Combined sewer system (CSS)

4 Connected impervious surface

5 Disconnected impervious surface

Activities or structural improvements that help reduce the quantity and improve the quality of stormwater runoff

During wet weather events, stormwater flows can exceed the capacity of the combined sewer system and/or the sewage treatment plant causing an overflow of a slurry of untreated wastewater and stormwater to local waterways.

When stormwater runoff flows from an impervious surface onto a pervious surface or into a green infrastructure practice prior to entering a local waterway or a sewer system, the impervious surface is considered "disconnected."

6 Green infrastructure practice

7 Impervious cover assessment (ICA)

8 Impervious cover reduction action plan (RAP)

9 Impervious surface

10 Long-term control plan (LTCP)

11 Low impact development (LID)

A stormwater management practice that captures, filters, absorbs, and/or reuses stormwater to help restore the natural water cycle by reducing stormwater runoff, promoting infiltration, and/or enhancing evapotranspiration

Readily available land use/land cover data from the New Jersey geographic information system (GIS) database are used to determine the percentage of impervious cover in municipalities by subwatershed. The ICA includes calculations of stormwater runoff volumes associated with impervious surfaces

A plan that identifies opportunities to retrofit specific sites with green infrastructure practices to reduce the impacts of stormwater runoff from impervious surfaces

Any surface that has been covered with a layer of material so that it is highly resistant to infiltration by water; examples include but are not limited to paved roadways, paved parking areas, and building roofs.

A systemwide evaluation of the sewage infrastructure and the hydraulic relationship between sewers, precipitation, treatment capacity, and overflows; it identifies measures needed to eliminate or reduce the occurrence of CSOs

A land planning and engineering design approach that emphasizes conservation and use of on-site natural features to manage stormwater runoff and protect water quality

GLOSSARY OF GREEN INFRASTRUCTURE TERMINOLOGY

12 Municipal separate storm sewer system (MS4) Nonpoint source (NPS) pollution

14 Pervious surface

A conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels, or storm drains) that transports stormwater runoff to local waterways or stormwater facilities such as a detention basin
"Nonpoint source pollution" is also called "people pollution." It is the pollution that comes from our everyday lives. It is the fertilizers that wash off our farms and lawns. It is the pet waste that washes into our streams. It is the sediment (or soil) that erodes from our lands into our local waterways. It is the oil and grease that comes from our parking lots. Finally, it is the pollutants such as nitrogen, phosphorus, and heavy metals that settle out of our atmosphere onto our roads and rooftops. When it rains, stormwater runoff carries nonpoint source pollution and may ultimately wash it into our waterways.

Any surface that allows water to pass through it; the most common pervious surface is a lawn area

The water from rain or melting snows that can become "runoff" flowing over the ground surface and returning to lakes and streams

INTRODUCTION

In 2014 the Surdna Foundation awarded funding to the Rutgers Cooperative Extension (RCE) Water Resources Program to help communities with combined sewer systems identify opportunities for implementing green infrastructure.

The RCE Water Resources Program is dedicated to leading the effort to help communities manage these systems using green infrastructure to intercept stormwater runoff, reduce combined sewer overflows (CSOs), manage existing water infrastructure, and minimize frequent flooding events.

Gloucester City is a community with a combined sewer system which carries wastewater and stormwater in the same pipes. During heavy rain or snow melt, combined sewer systems often cannot manage all of the water and overflow causing a combined sewer overflow (CSO) event. When overflows or CSO events occur, stormwater that has been mixed with untreated wastewater is discharged into streets, basements, and local waterways, carrying with it many contaminants. By using costeffective green infrastructure practices, Gloucester City can begin to reduce the negative impacts of stormwater runoff, reduce pressures on the local infrastructure, increase resiliency to CSO events, and protect the health of our waterways and the residents of Gloucester City.

This feasibility study is intended to be used as a guide for the community of Gloucester City to begin implementing green infrastructure practices and demonstrate to residents and local leaders the benefits and opportunities for better managing stormwater runoff.

Rutgers University professor, Tobiah
Horton, reviews a rain garden design with a homeowner.

WHAT IS GREEN INFRASTRUCTURE?

Green infrastructure is an approach to stormwater management that is cost-effective, sustainable, and environmentally friendly. Green infrastructure projects capture, filter, absorb, and reuse stormwater to maintain or mimic natural systems and to treat runoff as a resource. As a general principle, green infrastructure practices use soil and vegetation to recycle stormwater runoff through infiltration and evapotranspiration. When used as components of a stormwater management system, green infrastructure practices such as bioretention, green roofs, porous pavement, rain gardens, and vegetated swales can produce a variety of environmental benefits. In addition to effectively retaining and infiltrating rainfall, these technologies can simultaneously help filter air pollutants, reduce energy demands, mitigate urban heat islands, and sequester carbon while also providing communities with aesthetic and natural resource benefits (USEPA, 2013).

WHAT IS STORMWATER?

When rainfall hits the ground, it can soak into the ground or flow across the surface. When rainfall flows across a surface, it is called "stormwater" runoff. Pervious surfaces allow stormwater to readily soak into the soil and recharge groundwater. An impervious surface can be any material that has been placed over soil that prevents water from soaking into the ground. Impervious surfaces include paved roadways, parking lots, sidewalks, and rooftops. As impervious areas increase, so does the amount of stormwater runoff. New Jersey has many problems due to stormwater runoff from impervious surfaces, including:

- POLLUTION: According to the 2010 New Jersey Water Quality Assessment Report, 90\% of the assessed waters in New Jersey are impaired. Urban-related stormwater runoff is listed as the most probable source of impairment (USEPA, 2013). As stormwater flows over the ground, it picks up pollutants, including animal waste, excess fertilizers, pesticides, and other toxic substances. These pollutants are carried to waterways.
- FLOODING: Over the past decade, the state has seen an increase in flooding. Communities around the state have been affected by these floods. The amount of damage caused has increased greatly with this trend, costing billions of dollars over this time span.
- EROSION: Increased stormwater runoff causes an increase in stream velocity. The increased velocity after storm events erodes stream banks and shorelines, degrading water quality. This erosion can damage local roads and bridges and cause harm to wildlife.

Stormwater Catch Basin

Purple Cone Flower

To protect and repair our waterways, reduce flooding, and stop erosion, stormwater runoff has to be better managed. Impervious surfaces need to be disconnected with green infrastructure to prevent stormwater runoff from flowing directly into New Jersey's waterways. Disconnection redirects runoff from paving and rooftops to pervious areas in the landscape.

WHY ARE
 IMPERVIOUS SURFACES IMPORTANT?

The primary cause of the pollution, flooding, and erosion problems is the quantity of impervious surfaces draining directly to local waterways. New Jersey is one of the most developed states in the country. Currently, the state has the highest percent of impervious cover in the country at 12.1% of its total area (Nowak \& Greenfield, 2012). Many of these impervious surfaces are directly connected to local waterways (i.e., every drop of rain that lands on these impervious surfaces ends up in a local river, lake, or bay without any chance of being treated or soaking into the ground).

The literature suggests a link between impervious cover and stream ecosystem impairment starting at approximately 10\% impervious surface cover (Schueler, 1994; Arnold and Gibbons, 1996; May et al., 1997). Impervious cover may be linked to the quality of lakes, reservoirs, estuaries, and aquifers (Caraco et al., 1998), and the amount of impervious cover in a watershed can be used to project the current and future quality of streams. Based on the scientific literature, Caraco et al. (1998) classified urbanizing streams into the following three categories: sensitive streams, impacted streams, and non-supporting streams. Sensitive steams typically have a watershed impervious surface cover from $0-10 \%$. Impacted streams have a watershed impervious cover ranging from 11-25\% and typically show clear signs of degradation from urbanization. Non-supporting streams have a watershed impervious cover of greater than 25%; at this high level of impervious cover, streams are simply conduits for stormwater flow and no longer support a diverse stream community.

Reservoir

GLOUCESTER CITY

Located in Camden County, Gloucester City is situated on the Delaware River between Newton Creek and Little Timber Creek. The city covers an area totaling about 2.8 square miles and according to the 2010 census, has a population of 11,456 . Gloucester City shares its northern border with the City of Camden. To the east is Haddon Township and Mount Ephraim. Bellmawr and Brooklawn are to the south, and the Pennsylvania city of Philadelphia is to the west. The town has a combined sewer system with a total of seven combined sewer overflow (CSO) points. In the event of a heavy storm, much of the town's runoff and wastewater travels into nearby water bodies untreated. By evaluating the feasibility of green infrastructure, Gloucester City can identify cost-effective ways to help mitigate water quality and local flooding issues.

LAND USE IN GLOUCESTER CITY

Gloucester City is dominated by urban land uses. A total of 71.8% of the municipality's land use is classified as urban. Of the urban land in Gloucester City, high density and medium density residential are the dominant land uses ($>40 \%$). Urban land uses tend to have a high percentage of impervious surfaces.

CSO AND SEWERSHEDS IN GLOUCESTER CITY

IMPERVIOUS COVER ANALYSIS

The first step to reducing the impacts from impervious surfaces is to conduct an impervious cover assessment. This assessment can be completed on different scales: individual lot, municipality, or watershed. Impervious surfaces need to be identified for stormwater management.

The New Jersey Department of Environmental Protection's (NJDEP) 2007 land use/land cover geographical information system (GIS) data layer categorizes Gloucester City into many unique land use areas, assigning a percent impervious cover for each delineated area. These impervious cover values were used to estimate the impervious coverage for Gloucester City. Based upon the 2007 NJDEP land use/ land cover data, approximately 40% of Gloucester City has impervious cover. This level of impervious cover suggests that the streams in Gloucester City are likely non-supportive streams.

Water resources are typically managed on a watershed/ subwatershed basis; therefore an impervious cover analysis was performed for each subwatershed within Gloucester City (Table 1). On a subwatershed basis, impervious cover ranges from 0.0\% in the Big Timber Creek and Woodbury Creek subwatersheds to 40\% in the Newton Creek and Little Timber Creek subwatersheds. Evaluating impervious cover on a subwatershed basis allows the municipality to focus impervious cover reduction or disconnection efforts in the subwatersheds where frequent flooding occurs.

GLOUCESTER CITY SUBWATERSHEDS

TABLE 1. IMPERVIOUS COVER ANALYSIS BY SUBWATERSHED FOR GLOUCESTER CITY

Subwatershed	Total Area	Land Use Area	Water Area	Impervious Cover	
	(ac)	(ac)		(ac)	(\%)
Big Timber Creek	20.2	4.1	16.0	0.0	0%
Little Timber Creek	417.9	403.5	14.4	143.1	40%
Newton Creek	$1,328.3$	$1,073.9$	254.3	433.3	40%
Woodbury Creek	6.4	0.0	6.4	0.0	0%
Total	$\mathbf{1 , 7 7 2 . 7}$	$\mathbf{1 , 4 8 1 . 5}$	$\mathbf{2 9 1 . 2}$	$\mathbf{5 7 6 . 4}$	$\mathbf{4 0 \%}$

TABLE 2. STORMWATER RUNOFF VOLUMES FROM IMPERVIOUS SURFACES BY SUBWATERSHED IN GLOUCESTER CITY

Subwatershed	Total Runoff Volume for the 1.25" NJ Water Quality Storm (Mgal)	Total Runoff Volume for the NJ Annual Rainfall of 44" (Mgal)	Total Runoff Volume for the 2-year Design Storm (3.3") (Mgal)	Total Runoff Volume for the 10-year Design Storm (5.1") (Mgal)	Total Runoff Volume for the 100 Year Design Storm(8.5") (Mgal)
Big Timber Creek	0.0	0.0	0.0	0.0	0.0
Little Timber Creek	4.9	171.0	12.8	19.8	33.0
Newton Creek	14.7	517.6	38.8	60.0	100.0
Woodbury Creek	0.0	0.0	0.0	0.0	0.0
Total	19.6	688.6	51.6	79.8	133.0

In developed landscapes, stormwater runoff from parking lots, driveways, sidewalks, and rooftops flows to drainage pipes that feed the sewer system. The cumulative effect of these impervious surfaces and thousands of connected downspouts reduces the amount of water that can infiltrate into soils and greatly increases the volume and rate of runoff that flows to waterways.

Stormwater runoff volumes (specific to Gloucester City, Camden County) associated with impervious surfaces were calculated for the following storms: the New Jersey water quality design storm of 1.25 inches of rain, an annual rainfall of 44 inches, the 2-year design storm (3.3 inches of rain), the 10-year design storm (5.1 inches of rain), and the 100-year design storm (8.5 inches of rain). These runoff volumes are summarized in Table 2. A substantial amount of rainwater drains from impervious surfaces in Gloucester City. For example, if the stormwater runoff from one water quality storm (1.25 inches of rain) in the Newton Creek subwatershed was harvested and purified, it could supply water to 134 homes for a year (assuming 300 gallons per day per home).

WHAT CAN WE DO ABOUT IMPERVIOUS SURFACES?

Once impervious surfaces have been identified there are three steps to better manage these surfaces.

Eliminate surfaces that are not necessary. One method to reduce impervious cover is to "depave." Depaving is the act of removing paved impervious surfaces and replacing them with pervious soil and vegetation that will allow for the infiltration of rainwater. Depaving leads to the recreation of natural areas that will help reduce flooding, increase wildlife habitat, and positively enhance water quality as well as beautify neighborhoods.

Reduce or convert impervious surfaces. There may be surfaces that are required to be hardened, such as roadways or parking lots, but could be made smaller and still be functional. A parking lot that has two-way cart ways could be converted to one-way cart ways. There also are permeable paving materials such as porous asphalt, pervious concrete, or permeable paving stones that could be substituted for impermeable paving materials.

Disconnect impervious surfaces from flowing directly to local waterways. There are many ways to capture, treat, and infiltrate stormwater runoff from impervious surfaces. Opportunities also exist to harvest rainwater for non-potable uses such as water gardens.

GREEN INFRASTRUCTURE PRACTICES

BIORETENTION SYSTEMS

A rain garden, or bioretention system, is a landscaped, shallow depression that captures, filters, and infiltrates stormwater runoff. The rain garden removes nonpoint source pollutants from stormwater runoff while recharging groundwater. A rain garden serves as a functional system to capture, filter, and infiltrate stormwater runoff at the source while being aesthetically pleasing. Rain gardens are an important tool for communities and neighborhoods to create diverse, attractive landscapes while protecting the health of the natural environment. Rain gardens can also be installed in areas that do not infiltrate by incorporating an underdrain system.

Rain gardens can be implemented throughout communities to begin the process of re-establishing the natural function of the land. Rain gardens offer one of the quickest and easiest methods to reduce runoff and help protect our water resources. Beyond the aesthetic and ecological benefits, rain gardens encourage environmental stewardship and community pride.

BIOSWALES

Bioswales are landscape features that convey stormwater from one location to another while removing pollutants and allowing water to infiltrate. Bioswales are often designed for larger scale sites where water needs time to move and slowly infiltrate into the groundwater.

Much like the rain garden systems, bioswales can also be designed with an underdrain pipe that allows excess water to discharge to the nearest catch basin or existing stormwater system.

RAINWATER HARVESTING SYSTEMS

These systems capture rainwater, mainly from rooftops, in cisterns or rain barrels. The water can then be used for watering gardens, washing vehicles, or for other non-potable uses.

Rainwater harvesting systems come in all shapes and sizes. These systems are good for harvesting rainwater in the spring, summer, and fall but must be winterized during the colder months. Cisterns are winterized, and then their water source is redirected from the cistern back to the original discharge area.

PERMEABLE PAVEMENTS

These surfaces include pervious concrete, porous asphalt, interlocking concrete pavers, and grid pavers. Pervious concrete and porous asphalt are the most common of the permeable surfaces. They are similar to regular concrete and asphalt but without the fine materials. This allows water to quickly pass through the material into an underlying layered system of stone that holds the water, allowing it to infiltrate into the underlying uncompacted soil. They have an underlying stone layer to store stormwater runoff and allow it to slowly seep into the ground.

By installing an underdrain system, these systems can be used in areas where infiltration is limited. The permeable pavement system will still filter pollutants and provide storage but will not infiltrate the runoff.

DRAINAGE AREA

The drainage area of the porous asphalt system is the conventional asphalt cartway and the porous asphalt in the parking spaces. Runoff from the conventional asphalt flows into the porous asphalt parking spaces.

UNDERDRAIN

Systems with low
infiltration rates due to soil composition are often designed with an underdrain system to discharge the water.

DOWNSPOUT PLANTER BOXES

Downspout planter boxes are wooden or concrete boxes with plants installed at the base of the downspout that provide an opportunity to beneficially reuse rooftop runoff. Although small, these systems have some capacity to store rooftop runoff during rainfall events and release it slowly back into the system through an overflow.

Most often, downspout planter boxes are a reliable green infrastructure practice used to provide some rainfall storage and aesthetic value for property.

PLANTER BOXES

:The downspout planter !box can be wooden or !concrete. However, all :boxes must be reinforced \vdots to hold soil, stone, and :the quantity of rainfall it :is designed to store.

The system is designed

SUBGRADE to overflow using a perforated pipe located at the bottom of the downspout planter box.

NATIVE PLANTS

A downspout planter is
planted with a variety of ! grasses, wildflowers, and :woody plants that are adapted to the soil, precipitation, climate, and Oother site conditions.

CONNECTION

The system is designed to overflow into adjacent boxes using a connecting pipe that is sealed with silicon.

OVERFLOW

The overflow is the point where water discharges from the downspout planter.

STORMWATER PLANTERS

Stormwater planters are vegetated structures that are built into the sidewalk to intercept stormwater runoff from the roadway or sidewalk. Stormwater planters, like rain gardens, are a type of bioretention system. This means many of these planters are designed to allow the water to infiltrate into the ground. However, some are designed simply to filter the water and convey it back into the stormwater sewer system via an underdrain system.

TREE FILTER BOXES

Tree filter boxes can be pre-manufactured concrete boxes or enhanced tree pits that contain a special soil mix and are planted with a tree or shrub. They filter stormwater runoff but provide little storage capacity. They are typically designed to quickly filter stormwater and then discharge it to the local sewer system.

Often tree filter boxes are incorporated into streetscape systems that include an underlying stormwater system which connects several boxes (as shown on the next page). This is also coupled with pervious concrete to increase the storage capacity for rainwater into the system.

GREEN INFRASTRUCTURE IN GLOUCESTER CITY ${ }^{35}$

INTRODUCTION

To address the impact of stormwater runoff from impervious surfaces, the first step is to identify opportunities in the municipality for eliminating, reducing, or disconnecting directly connected impervious surfaces. To begin this task, aerial photographs are used to identify sites with impervious surfaces in the municipality that may be suitable. After sites are identified, site visits are conducted to photo-document all opportunities and evaluate the feasibility of eliminating, reducing, or disconnecting directly connected impervious surfaces. A brief description of each site discussing the existing conditions and recommendations for treatment of the impervious surfaces is developed.

For Gloucester City, concept sketches for three sites have been developed. Additionally, each project has been classified as a mitigation opportunity for recharge potential, total suspended solids removal, and stormwater peak reduction. Finally, detailed green infrastructure information sheets provide an estimate of gallons of stormwater captured and treated per year by each proposed green infrastructure practice. The concept plans provide an aerial photograph of the site and details of the proposed green infrastructure practices.

GREEN INFRASTRUCTURE EXAMPLE PROJECT SITE: RAIN GARDEN

This site is located at Gloucester Junior Senior High School. Building downspouts are connected directly to the local sewer system. Connected downspouts can be disconnected and directed into rain gardens. Installing rain gardens adjacent to the building can capture, treat, and infiltrate roof runoff. Rain gardens are aesthetically pleasing and will help beautify the space.

GREEN INFRASTRUCTURE EXAMPLE PROJECT SITE: DEPAVING \& CISTERN

This site is located at the Gloucester City Fire Department. Stormwater is currently draining to nearby catch basins. Downspouts along the building can be directed into rain gardens to capture, treat, and infiltrate runoff. A cistern connected to building downspouts can capture water, allowing it to be used for washing vehicles and equipment.

GREEN INFRASTRUCTURE EXAMPLE PROJECT SITE: POROUS ASPHALT

This site is located at Proprietors Park, directly adjacent to the Gloucester City Marina. Stormwater is currently draining from east to west across the site. Parking spaces in the Proprietors Park parking lot can be converted to porous asphalt to capture and treat stormwater runoff. This will help decrease the amount of polluted water that drains to the Delaware River.

IDENTIFIED PROJECTS

POTENTIAL PROJECT SITES
 WITHIN STUDY AREA

$\#$	Name					
1	Proprietors Park	Address				
2	Office Building	101 South King Street, Gloucester City, NJ 08030				
3	Gloucester City Fire Department	1 North King Street, Gloucester City, NJ 08030				
4	First Presbyterian Church of Gloucester City	301 Monmouth Street, Gloucester City, NJ 08030				
5	Gloucester City Municipal Court/Police/ Ambulance	313 Monmouth Street, Gloucester City, NJ 08030				
6	First Baptist Church of Gloucester City	400 Monmouth Street, Gloucester City, NJ 08030				
7	Gloucester Catholic High School	333 Ridgeway Street, Gloucester City, NJ 08030				
8	Church of the Ascension	110 South Sussex Street, Gloucester City, NJ 08030				
9	American Legion	Cumberland Street \& Atlantic Street, Gloucester City, NJ 08030				
10	Mary Ethel Costello School	Washington Avenue \& Little Somerset Street, Gloucester City, NJ 08030				
11	Johnson Recreation Area / Sewage Plant	South Johnson Boulevard and Klemm Avenue, Gloucester City, NJ 08030				
12	Brown Street Elementary School	62 South Brown Street, Gloucester City, NJ 08030				
13	Washington St. Playlot	Washington Avenue \& Little Somerset Street, Gloucester City, NJ 08030				
14	Playground	Division Street \& Cherry Street, Gloucester City, NJ 08030	$	$	15	Highland Park United Methodist Church
:---	:---					
16	Church of God					

SITE SELECTION \& METHODOLOGY

TABLE 1. AERIAL LOADING COEFFICIENTS

Land Cover	Total Phosphorus (lbs/acre/yr)	Total Nitrogen (lbs/acre/yr)	Total Suspended Solids (lbs/acre/yr)
High, Medium Density Residential	1.4	15	140
Low Density, Rural Residential	0.6	5	100
Commercial	2.1	22	200
Industrial	1.5	16	200
Urban, Mixed Urban, Other Urban	1.0	10	120
Agriculture	1.3	10	300
Forest, Water, Wetlands	0.1	3	40
Barrenlandl Transitional Area	0.5	5	60

A collection of sites are identified in the city based on site visibility, feasibility, cost-effectiveness, and potential partnerships. The RCE Water Resources Program uses a "look here first" method to identify the most accessible and visible sites. These sites include: schools, churches, libraries, municipal buildings, public works, firehouses, post offices, social clubs such as the Elks or Moose lodge, and parks/recreational fields. These sites often have large amounts of impervious cover and typically are relatively easy to engage in implementing green infrastructure practices. Sites are selected based on their feasibility or the ability to get the project in the ground. This criteria is based on property ownership and ability to do maintenance. In addition, potential partnerships related to the site help make a project feasible.

Initially, aerial imagery was used to identify potential project sites that contain extensive impervious cover. Field visits were then conducted at each of these potential project sites to determine if a viable option exists to reduce impervious cover or to disconnect impervious surfaces from draining directly to the local waterway or storm sewer system. During the site visit, appropriate green infrastructure practices for the site were determined.

For each potential project site, specific aerial loading coefficients for commercial land use were used to determine the annual runoff loads for total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) from impervious surfaces (Table 1). These are the same aerial loading coefficients that NJDEP uses in developing total maximum daily loads (TMDLs) for impaired waterways of the state. The percentage of impervious cover for each site was extracted from the 2007 NJDEP land use/land cover database.

For impervious areas, runoff volumes were determined for the water quality design storm (1.25 inches of rain over twohours) and for the annual rainfall total of 44 inches.

Preliminary soil assessments were conducted for each potential project site identified in Gloucester City using the United States Department of Agriculture Natural Resources Conservation Service Web Soil Survey, which utilizes regional and statewide soil data to predict soil types in an area.

For each potential project site, drainage areas were determined for each of the green infrastructure practices proposed at the site. These green infrastructure practices were designed to manage the 2 -year design storm, enabling these practices to capture 95% of the annual rainfall. Runoff volumes were calculated for each proposed green infrastructure practice. The reduction in TSS loading was calculated for each drainage area for each proposed green infrastructure practice using the aerial loading coefficients in Table 1. The maximum volume reduction in stormwater runoff for each green infrastructure practice for a storm was determined by calculating the volume of runoff captured from the 2-year design storm. For each green infrastructure practice, peak discharge reduction potential was determined through hydrologic modeling in HydroCAD. For each green infrastructure practice, a cost estimate is provided. These costs are based upon the square footage of the green infrastructure practice and the real cost of green infrastructure practice implementation in New Jersey.

POTENTIAL PROJECT SITES

pervious pavement
bioretention system
[] drainage area
[.] property line
$\square 2012$ Aerial: NJOIT, OGIS

Stormwater is currently draining from east to west across the site. Parking spaces in the Proprietors Park parking lot can be converted to porous asphalt to capture and treat stormwater runoff. Stormwater can be diverted from the road into a rain garden. Installing a rain garden adjacent to the roadway can capture, treat, and infiltrate runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

| Impervious Cover (lbs/yr) | | Existing Loads from Impervious
 Cover | | | Runoff Volume from Impervious Cover (Mgal) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\%$ | sq. ft. | TP | TN | TSS | From the $1.25 "$ Water Quality
 Storm | For an Annual
 Rainfall of $44 "$ |
| 10.39 | 22,001 | 1.1 | 11.1 | 101.0 | 0.017 | 0.60 |

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft/second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.027	4	1,960	0.07	275	$\$ 1,375$
Pervious pavements	0.317	53	23,227	0.87	3,315	$\$ 82,875$

\square depave / greening
[] drainage area
[] property line
$\square 2012$ Aerial: NJOIT, OGIS

Stormwater is currently draining across this site directly into the river. Parking has been restricted on this site, and it currently serves as a recreational space. This lot can be depaved and converted into a green space to capture and treat stormwater runoff. A green space will also provide more usable space for recreational activities. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

| Impervious Cover (lbs/yr) | | Existing Loads from Impervious
 Cover | | | Runoff Volume from Impervious Cover (Mgal) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\%$ | sq. ft. | TP | TN | TSS | From the 1.25" Water Quality
 Storm | For an Annual
 Rainfall of 44" |
| 61.63 | 212,572 | 10.2 | 107.4 | 976.0 | 0.166 | 5.83 |

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Depave / greening	1.804	302	132,368	4.98	65,960	$\$ 329,800$

\square pervious pavement
(bioretention system
[] drainage area
[]. property line
$\square 2012$ Aerial: NJOIT, OGIS

Stormwater is currently draining across the site into nearby catch basins. Parking spaces in the east lot can be converted to porous asphalt to capture and treat stormwater runoff. Stormwater can be diverted from the main parking lot into a rain garden. Installing a rain garden adjacent to the parking lot can capture, treat, and infiltrate runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervious Cover (lbs/yr)		Existing Loads from Impervious Cover			Runoff Volume from Impervious Cover (Mgal)	
$\%$	sq. ft.	TP	TN	TSS	From the 1.25" Water Quality Storm	For an Annual Rainfall of 44"
22.24	5,246	0.3	2.6	24.1	0.004	0.14

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.080	13	5,872	0.22	770	$\$ 3,850$
Pervious pavements	0.231	39	16,951	0.64	6,360	$\$ 159,000$

\square bioretention system
\square cistern
[] drainage area
[]. property line
2012 Aerial: NJOIT, OGIS

Stormwater is currently draining to nearby catch basins. Parking spaces in the north lot can be converted to porous asphalt to capture and treat stormwater runoff. Downspouts along the building can be directed into rain gardens to capture, treat, and infiltrate runoff. A cistern connected to building downspouts can capture water, allowing it to be used for washing equipment. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

| Impervious Cover (lbs/yr) | | Existing Loads from Impervious
 Cover | | | Runoff Volume from Impervious Cover (Mgal) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\%$ | sq. ft. | TP | TN | TSS | From the $1.25 "$ Water Quality
 Storm | For an Annual
 Rainfall of $44 "$ |
| 85.00 | 19,434 | 0.9 | 9.8 | 89.2 | 0.015 | 0.53 |

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft/second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.131	22	9,598	0.37	1,260	$\$ 6,300$
Cistern	0.033	5	2,401	0.09	1,500	$\$ 3,000$

\square pervious pavement
[.] drainage area
[.] property line
2012 Aerial: NJOIT, OGIS

Stormwater is currently draining from south to north across the site. Parking spaces in the east lot can be converted to porous asphalt to capture and treat stormwater runoff. Adjacent downspouts along the building can also be directed into the parking lot, allowing for the treatment of roof runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

| Impervious Cover (lbs/yr) | | Existing Loads from Impervious
 Cover | | | Runoff Volume from Impervious Cover (Mgal) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\%$ | sq. ft. | TP | TN | TSS | From the $1.25 "$ Water Quality
 Storm | For an Annual
 Rainfall of $44 "$ |
| 95.00 | 10,018 | 0.5 | 5.1 | 46.0 | 0.008 | 0.27 |

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavements	0.113	19	8,303	0.32	3,030	$\$ 75,750$

] pervious pavement
[.] drainage area
[.] property line
$\square 2012$ Aerial: NJOIT, OGIS

Stormwater is currently draining from south to north across the site. Paved areas to the east and west and of the south entrance can be converted to porous asphalt to capture and treat roof runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

| Impervious Cover (lbs/yr) | | Existing Loads from Impervious
 Cover | | | Runoff Volume from Impervious Cover (Mgal) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\%$ | sq. ft. | TP | TN | TSS | From the 1.25" Water Quality
 Storm | For an Annual
 Rainfall of 44" |
| 87.76 | 15,759 | 0.8 | 8.0 | 72.4 | 0.012 | 0.43 |

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavement	0.052	9	3,785	0.14	510	$\$ 12,750$

stormwater planter
[]. drainage area
[.] property line
\square
2012 Aerial: NJOIT, OGIS

Stormwater is currently draining the site to nearby catch basins. A stormwater planter can be installed along the west sidewalk to capture and treat roadway stormwater runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

| Impervious Cover (lbs/yr) | | Existing Loads from Impervious
 Cover | | | Runoff Volume from Impervious Cover (Mgal) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\%$ | sq. ft. | TP | TN | TSS | From the $1.25 "$ Water Quality
 Storm | For an Annual
 Rainfall of $44 "$ |
| 45.00 | 2,647 | 0.1 | 1.3 | 12.2 | 0.002 | 0.07 |

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Stormwater planter	0.062	10	4,578	0.17	375	$\$ 37,500$

\square stormwater planter
ㄷ.] drainage area
[〕] property line
$\square 2012$ Aerial: NJOIT, OGIS

Stormwater is currently draining from north to south across the site. Stormwater planters can be installed along the northern and southern sidewalks to capture and treat stormwater runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervious Cover (lbs/yr)		Existing Loads from Impervious Cover			Runoff Volume from Impervious Cover (Mgal)	
$\%$	sq. ft.	TP	TN	TSS	From the 1.25" Water Quality Storm	For an Annual Rainfall of 44"
90.00	66,498	3.2	33.6	305.3	0.052	1.82

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Stormwater planters	0.232	39	17,041	0.64	1,725	$\$ 172,500$

(-] bioretention system
\square stormwater planter
[]. drainage area
[].] property line
$\square 2012$ Aerial: NJOIT, OGIS

Stormwater is currently draining from north to south across the site. A stormwater planter can be constructed along the southern sidewalk to capture and treat stormwater runoff. Downspouts along the building can be directed into rain gardens. Installing rain gardens adjacent to the building can capture, treat, and infiltrate runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervious Cover (lbs/yr)		Existing Loads from Impervious Cover			Runoff Volume from Impervious Cover (Mgal)	
$\%$	sq. ft.	TP	TN	TSS	From the 1.25" Water Quality Storm	For an Annual Rainfall of 44"
71.75	12,292	0.6	6.2	56.4	0.010	0.34

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft//second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.027	5	1,990	0.07	265	$\$ 1,325$
Stormwater planter	0.058	10	4,256	0.16	370	$\$ 1,850$

tree filter box
[.] drainage area
[.] property line
$\square 2012$ Aerial: NJOIT, OGIS

Stormwater is currently draining to nearby catch basins. Tree filter boxes can be constructed along the eastern sidewalk to capture and treat stormwater runoff and provide additional landscape value to the site. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

| Impervious Cover | | Existing Loads from Impervious
 Cover (lbs/yr) | | | Runoff Volume from Impervious Cover (Mgal) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\%$ | sq. ft. | TP | TN | TSS | From the 1.25" Water Quality
 Storm | For an Annual
 Rainfall of 44" |
| 22.24 | 5,246 | 0.3 | 2.6 | 24.1 | 0.004 | 0.14 |
| Recommended
 Infrastructure
 Practices | Recharge
 Potential
 (Mgal/yr) | TSS
 Removal
 Potential
 (lbs/yr) | Maximum Volume
 Reduction Potential
 (gal/storm) | Peak Discharge
 Reduction Potential
 (cu. ft./second) | Estimated
 Size (sq. ft.) | Estimated
 Cost |
| Tree filter boxes | 0.111 | 19 | 8123.84472 | 0.31 | 790 | $\$ 20,000$ |

disconnected downspout
\square bioretention system
\square bioswale
\square stormwater planter
[] drainage area
[]. property line
$\square 2012$ Aerial: NJOIT, OGIS

Stormwater is currently draining from north to south across the site. A rain garden in the green space at the intersection of Cumberland Street and Joy Street can capture, treat, and infiltrate runoff. A stormwater planter along the western sidewalk can capture and treat stormwater runoff. Downspouts can be directed into a bioswale at the south of the building to capture and treat roof runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervious Cover (lbs/yr)		Existing Loads from Impervious Cover			Runoff Volume from Impervious Cover (Mgal)	
$\%$	sq. ft.	TP	TN	TSS	From the 1.25" Water Quality Storm	For an Annual Rainfall of 44"
22.24	5,246	0.3	2.6	24.1	0.004	0.14

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. f./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.097	16	7,092	0.27	940	$\$ 4,700$
Bioswale	0.069	12	5,049	0.19	470	$\$ 2,350$
Disconnections	-	-	-	-	-	$\$ 500$
Stormwater planter	0.067	11	4,892	0.18	640	$\$ 64,000$

] bioretention system
\square cistern
[.] drainage area
[.] property line
2012 Aerial: NJOIT, OGIS

Stormwater is currently draining from north to south across the site. Downspouts along the east wall can be directed into a rain garden. Installing a rain garden can capture, treat, and infiltrate runoff. Cisterns connected to building downspouts along the park can capture water, allowing it to be used for watering existing landscape and washing equipment. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervious Cover (lbs/yr)		Existing Loads from Impervious Cover			Runoff Volume from Impervious Cover (Mgal)	
$\%$	sq. ft.	TP	TN	TSS	From the 1.25" Water Quality Storm	For an Annual Rainfall of 44"
8.54	62,613	3.0	31.6	287.5	0.049	1.72

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.108	18	7,899	0.30	1,040	$\$ 5,200$
Cistern	0.014	2	1,002	0.04	1,000	$\$ 2,000$

\square pervious pavement
\square tree filter box
[].] drainage area
[.] property line
$\square 2012$ Aerial: NJOIT, OGIS

Stormwater is currently draining across the site to nearby catch basins. Tree filter boxes can be constructed along the southern sidewalk to capture and treat stormwater runoff and provide additional landscape value to the site. The paved area adjacent to the main entrance can be converted to porous asphalt to capture and treat stormwater runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervious Cover (lbs/yr)		Existing Loads from Impervious Cover			Runoff Volume from Impervious Cover (Mgal)	
$\%$	sq. ft.	TP	TN	TSS	From the 1.25" Water Quality Storm	For an Annual Rainfall of 44"
64.97	11,888	0.6	6.0	54.6	0.009	0.33

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft/second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavement	0.090	15	6,628	0.25	2,690	$\$ 67,250$
Tree filter boxes	0.083	14	6,082	0.23	465	$\$ 20,000$

\square pervious pavement

- bioretention system
\square tree filter box
[] drainage area
[.] property line
2012 Aerial: NJOIT, OGIS

Stormwater is currently draining from south to north across the site. Tree filter boxes can be constructed along the southern sidewalk to capture and treat stormwater runoff. The paved area on the site can be converted to a porous basketball court to treat stormwater runoff. Stormwater can be diverted from the road into a rain garden to capture, treat, and infiltrate runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervious Cover (lbs/yr)		Existing Loads from Impervious Cover			Runoff Volume from Impervious Cover (Mgal)	
$\%$	sq. ft.	TP	TN	TSS	From the 1.25" Water Quality Storm	For an Annual Rainfall of 44"
40.00	3,711	0.2	1.9	17.0	0.003	0.10

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.051	8	3,710	0.14	490	$\$ 2,450$
Pervious pavement	0.069	12	5,057	0.19	2,060	$\$ 51,500$
Tree filter boxes	0.026	4	1,915	0.07	245	$\$ 10,000$

pervious pavement
\square tree filter box
[] drainage area
[.] property line
2012 Aerial: NJOIT, OGIS

Stormwater is currently draining from south to north across the site. Tree filter boxes can be constructed along the northern sidewalk to capture and treat stormwater runoff and provide additional landscape value to the site. Adjacent sidewalks can be converted to porous asphalt to capture and treat stormwater runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

| Impervious Cover (lbs/yr) | | Existing Loads from Impervious
 Cover | | | Runoff Volume from Impervious Cover (Mgal) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\%$ | sq. ft. | TP | TN | TSS | From the $1.25 "$ Water Quality
 Storm | For an Annual
 Rainfall of $44 "$ |
| 9.99 | 509 | 0.0 | 0.3 | 2.3 | 0.000 | 0.01 |

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft//second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavement	0.082	14	5,999	0.22	1,390	$\$ 34,750$
Tree filter box	0.084	14	6,179	0.23	505	$\$ 20,000$

Stormwater is currently draining from east to west across the site. Building downspouts can be directed into a rain garden. Installing a rain garden adjacent to the building can capture, treat, and infiltrate roof runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

| Impervious Cover (lbs/yr) | | Existing Loads from Impervious
 Cover | | | Runoff Volume from Impervious Cover (Mgal) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\%$ | sq. ft. | TP | TN | TSS | From the 1.25" Water Quality
 Storm | For an Annual
 Rainfall of 44" |
| 35.00 | 5,291 | 0.3 | 2.7 | 24.3 | 0.004 | 0.15 |

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. f./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.038	6	2,798	0.11	380	$\$ 1,900$

-
disconnected downspout
bioretention system
ㄷ.] drainage area
[.] property line
$\square 2012$ Aerial: NJOIT, OGIS

Stormwater is currently draining across the site to nearby catch basins. Building downspouts can be disconnected and directed into a rain garden. Installing a rain garden adjacent to the building can capture, treat, and infiltrate roof runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervious Cover (lbs/yr)		Existing Loads from Impervious Cover			Runoff Volume from Impervious Cover (Mgal)	
$\%$	sq. ft.	TP	TN	TSS	From the 1.25" Water Quality Storm	For an Annual Rainfall of 44"
72.14	19,570	0.9	9.9	89.9	0.015	0.54

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.049	8	3,598	0.13	470	$\$ 2,350$
Disconnections	-	-	-	-	-	$\$ 500$

\square bioretention system
[] drainage area
[.] property line
$\square 2012$ Aerial: NJOIT, OGIS

Stormwater is currently draining across the site to nearby catch basins. Building downspouts can be directed into a rain garden. Installing a rain garden adjacent to the building can capture, treat, and infiltrate roof runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

| Impervious Cover (lbs/yr) | | Existing Loads from Impervious
 Cover | | | Runoff Volume from Impervious Cover (Mgal) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\%$ | sq. ft. | TP | TN | TSS | From the $1.25 "$ Water Quality
 Storm | For an Annual
 Rainfall of $44 "$ |
| 35.00 | 4,357 | 0.2 | 2.2 | 20.0 | 0.003 | 0.12 |

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. f./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.049	8	3,576	0.13	475	$\$ 2,375$

Stormwater is currently draining across the site into a nearby field. The grassy area north of the parking lot can be converted into a rain garden. Installing a rain garden adjacent to the parking lot can capture, treat, and infiltrate stormwater runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

| Impervious Cover (lbs/yr) | | Existing Loads from Impervious
 Cover | | | Runoff Volume from Impervious Cover (Mgal) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\%$ | sq. ft. | TP | TN | TSS | From the 1.25" Water Quality
 Storm | For an Annual
 Rainfall of 44" |
| 17.85 | 433,435 | 20.9 | 218.9 | 1990.1 | 0.338 | 11.89 |

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.521	87	38,240	1.44	5,020	$\$ 25,100$

\square disconnected downspout
\square bioretention system
[〕] drainage area
[.] property line
$\square 2012$ Aerial: NJOIT, OGIS

Stormwater is currently draining across the site to nearby catch basins. Building downspouts can be disconnected and directed into rain gardens. Installing rain gardens adjacent to the building can capture, treat, and infiltrate roof runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

| Impervious Cover (lbs/yr) | | Existing Loads from Impervious
 Cover | | | Runoff Volume from Impervious Cover (Mgal) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\%$ | sq. ft. | TP | TN | TSS | From the 1.25" Water Quality
 Storm | For an Annual
 Rainfall of 44" |
| 22.24 | 5,246 | 0.3 | 2.6 | 24.1 | 0.004 | 0.14 |

Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.427	72	40,544	1.52	4,170	$\$ 20,850$
Disconnections	-	-	-	-	-	$\$ 4,000$

COMMUNITY ENGAGEMENT \& EDUCATION

BUILD A RAIN BARREL WORKSHOP

With the Build a Rain Barrel Workshop, community members participate in a short presentation on stormwater management and water conservation and then learn how to build their own rain barrel. Workshop participants work with trained experts to convert 55 gallon plastic food-grade drums into rain barrels. They are quickly able to take an active role in recycling rainwater by installing a rain barrel at their house! Harvesting rainwater has many benefits including saving water, saving money, and preventing basement flooding. By collecting rainwater, homeowners are helping to reduce flooding and pollution in local waterways. When rainwater flows across hard surfaces like rooftops, driveways, roadways, parking lots, and compacted lawns, it carries pollution to our local waterways. Harvesting the rainwater in a rain barrel is just one of the ways homeowners can reduce the amount of rainwater draining from their property and help reduce neighborhood flooding problems.

STORMWATER MANAGEMENT IN YOUR SCHOOLYARD

The Stormwater Management in Your Schoolyard program provides educational lectures, hands-on activities, and community-level outreach for students on the topics of water quality issues and stormwater management practices such as rain gardens and rain barrels. Program objectives include the exploration of various aspects of the natural environment on school grounds, the detailed documentation of findings related to these explorations, and the communication of these findings to the school community. As part of this program, several New Jersey State Core Curriculum Content Standards for science (5.1, 5.3, and 5.4), 21st-century life and careers (9.1, 9.3, and 9.4), and social studies (6.3) are addressed. Every school is unique in its need for stormwater management, so each school's Stormwater Management in Your Schoolyard program can be delivered in a variety of ways. This program can be tailored for grades K-8 or 9-12 and can be offered to meet a variety of schedules.

MAINTENANCE PROCEDURES

MAINTAINING GLOUCESTER CITY'S GREEN INFRASTRUCTURE SYSTEMS

(1) Rain Garden

Stormwater Planter
Bioswale
Tree Filter Box

Rain Barrel
Cistern

3
Porous Asphalt
Underground Detention

RAIN GARDEN / STORMWATER PLANTER / BIOSWALE / TREE FILTER BOX

Weekly

- Water
- Weed
- Inspect for invasive plants, plant health, excessive sediment, and movement of sediment within the rain garden
- Observe the rain garden during rain events and note any successes (Example of success: stormwater runoff picks up oil and grease from the parking lot, flows through a curb cut, and into a rain garden; the rain garden traps the nonpoint source pollutants before they reach the nearby
 waterway)

Annually

- Mulch in the spring to retain a 3 -inch mulch layer in the garden
- Prune during dormant season to improve plant health
- Remove sediment
- Plant
- Test the soil (every 3 years)
- Harvest plants to use in other parts of the landscape

RAIN BARREL

- Keep screen on top and a garden hose attached to the overflow to prevent mosquitoes; change screen every two years
- Remove debris from screen after storms
- Disconnect the barrel in winter; store inside or outside with a cover
- Clean out with long brush and water/dilute bleach solution (~3\%)

CISTERN

- In the fall prepare your cistern for the winter by diverting flow so no water can enter and freeze within the barrel
- Weekly check: Check for leaks, clogs and other obstructions, holes and vent openings where animals, insects, and rodents may enter; repair leaks with sealant; drain the first flush diverter/ roof washer after every rainfall event
- Monthly check: Check roof and roof catchments to make sure no debris is entering the gutter and downspout directed into the cistern; keep the roof, gutters, and leader inlets clear of leaves; inspect the first flush filter and all of its attachments and make any necessary replacements; inspect cistern cover, screen, overflow pipe, sediment trap and other accessories and make any necessary replacements

POROUS ASPHALT

- Materials cost is $\sim 20-25 \%$ more than traditional asphalt
- Long-term maintenance is required by routine quarterly vacuum sweeping
- Sweeping cost may be off-set by reduced deicing costs
- Asphalt repairs can be made with standard asphalt not to exceed 10% of surface area
- Concrete repairs can be made with standard concrete not to exceed 10% of the surface area

UNDERGROUND DETENTION

- Periodic inspections of the inlet and outlet areas to ensure

- Local authorities may require annual inspection or require that they carry out inspections and maintenance

