Green Infrastructure Champions Program

This program is partially funded by the Rutgers New Jersey Agricultural Experiment Station, The Geraldine R. Dodge Foundation, and NJ Sea Grant Consortium and is a collaboration of the Rutgers Cooperative Extension Water Resources Program and the Green Infrastructure Subcommittee of Jersey Water Works.
Green Infrastructure Champion Training: Part 3
“Maintaining green infrastructure practices/projects”

March 6, 2019
Rutgers EcoComplex
Bordentown, NJ
Green Infrastructure Systems:

- **Vegetative Systems**
 - Bioretention Systems/Rain Gardens
 - Stormwater Planters

- **Harvesting Systems**
 - Cistern/Rain Barrel
 - Downspout Planter Boxes

- **Storage Systems**
 - Street Trees/Stormwater Tree Pits
 - Pervious Pavement
Difference between the types of systems:

- **Vegetative Systems**: focus on reducing water quality impacts
 These systems are typically located close to the sources of runoff and can manage the smaller storms of several inches. The main treatment mechanisms are infiltration, filtration, and evaportranspiration.

- **Harvesting Systems**: focus on the conservation, capture, storage, and reuse of rainwater.
 These systems are located close to residential and commercial buildings.

- **Storage Systems**: provide storage of stormwater, quantity control, and infiltration of stormwater runoff.
 These systems are typically located close to runoff sources within residential, commercial, and industrial landscapes. The main treatment mechanism is reducing peak flows of stormwater by storing it before it enters the sewer system.
Bioretention Systems/Rain Gardens

Landscaped, shallow depression that captures, filters, and infiltrates stormwater runoff
Bioretention Systems / Rain Gardens

How it works:
These systems capture, filter, and infiltrate stormwater runoff using soils and plant material. They are designed to capture the first few inches of rainfall from rooftops, parking areas, and streets.

Benefits:
Removes nonpoint source pollutants from stormwater runoff while recharging groundwater

Restore/“mimic” predevelopment site hydrology
 • Infiltration
 • Evapotranspiration

Improve water quality
 • Sedimentation, filtration, & plant uptake
 • Microbial activity

Add aesthetic value
 • Plant selection
Design Criteria

- The size of the rain garden is a function of volume of runoff to be treated and recharged.

- Typically, a rain garden is sized to handle the two-year design storm (3.3 inches of rain over 24 hours).

- Rain gardens range from 75 to 2,500 square feet.
Bioretention Systems / Rain Gardens

NOTE:
1. Inlet pipe may be placed within the berm or on top of it. Refer to elevations on site plan.
2. Inlet pipe may not be in shown location. Water may be flowing in via stone-lined channel.
Rain garden installation at Ferry Avenue Library in Camden
Rain garden at Woods Road School in Hillsborough
Rain garden at Hillsborough Municipal Building
Stormwater Detention Basins

How it works:

Basins have outlets that have been designed to detain stormwater runoff for some minimum time to prevent downstream flooding. The basins provide quantity control; they need to be mowed regularly. The concrete low-flow channels should be dry except during and immediately following a storm event (typically 48 hours). Basins can treat stormwater runoff through settling of particles.

Benefits:

- Reduces flooding
- Reduces the need to mow
- Eliminates any use of commercial fertilizers and pesticides
Design Criteria
Stormwater Detention Basins

- emergency spillway
- embankment
- riprap
- barrel
- concrete base
- riser
- rip rap
- water detention level
- grass
- sediment forebay

Storage System
Maintained Detention Basins
Common Concerns with Detention Basins

1. Embankment and outlet stabilization
2. Sedimentation
3. Outlet blockages
4. Broken or clogged low-flow channels
5. Standing water or wet soils
6. Floatables and debris
7. Weeds or woody vegetation
1. Embankment and Outlet Stabilization

Embankment Destabilization

Outlet Destabilization
2. Sedimentation

Accumulation of sediment in basin
3. Outlet Blockage

Outlet blockage by debris

Outlet blockage by sediment
4. Broken or Clogged Low-Flow Channels

Broken low-flow channel

Clogged low-flow channel
5. Standing Water or Wet Soils

Standing water in detention basin
6. Floatables and Debris

Accumulation of floatables in basin

Basin is a dumping ground
7. Weeds and Woody Vegetation

Woody vegetation in basin

Invasive species have overtaken the basin
Additional Best Management Practices Green Infrastructure Systems
Stormwater Planters

Vegetated structures that are built into the sidewalk to intercept stormwater runoff from the roadway or sidewalk.
Stormwater Planters

How it works:
• It is a structural bioretention system that is installed in a sidewalk
• Contains a layer of stone that is topped with bioretention media and plants or trees
• Captures stormwater runoff from the roadway and sidewalk
• Once the system fills up, runoff flows back into the street or into an overflow drain which connects to the sewer system

Benefits:
• Allows water to infiltrate into the ground
Stormwater Planters

Vegetative System
Stormwater Planter at the Brimm School

Vegetative System
Stormwater Planters at the Vietnamese Community Garden

Vegetative System
Cisterns/ Rain Barrels

These systems capture rainwater, mainly from rooftops, in cisterns or rain barrels. The water can then be used to water a garden, wash vehicles, or for other non-potable uses.
Cistern/ Rain Barrel

How it works:
• Capture, diversion, and storage of rainwater

Benefits:
• Eliminates need for complex and costly distribution systems
• Provides additional water source
• Landscape irrigation
• Reduces flow to stormwater drains
• Reduces non-point source pollution
• Delays expansion of existing water treatment plants
• Reduces consumers’ utility bills
Cistern at the Neighborhood Center
Harvesting System
Cistern at the St. Bartholomew’s Church
Harvesting System
Cistern at Front Street Community Garden

Harvesting System
Downspout Planters

Wooden or concrete boxes with plants installed at the base of the downspout that provide an opportunity to beneficially reuse rooftop runoff.
Downspout Planter: Harvesting System

How it works:
• Constructed boxes placed against buildings
• Contains stone/gravel topped with sandy compost mixture and plants
• Designed with underdrain and overflows
• Disconnects downspouts

Benefits:
• Aesthetics
• Provide some rainfall storage
Downspout Planter: Harvesting System

- 2"x2"x6' wood block edge support (2)
- Pea gravel erosion protection (place near downspout inlet and at ends of box adjacent to overflow)

0.4 mil plastic liner
6" min. overlap on all edges. Contractor shall test for water tight condition prior to backfilling.

3" diameter overflow to planters in series on both sides or storm sewer system

2" diameter perforated pipe to planters in series or storm sewer system

Plywood base (inside of planks)

Paver stones or approved alternative

Diverters - “Save the Rain” metal diverter or equivalent.
Downspout Planter Boxes at Acelero

Harvesting System
Downspout Planter Boxes at Davis School

Harvesting System
Stormwater Tree Pits/Street Trees

Pre-manufactured concrete boxes or enhanced tree pits that contain a special soil mix and are planted with a tree or shrub.
Stormwater Tree Pits/Street Trees

How it works:
• They filter stormwater runoff from a roadway or parking lot but provide limited storage capacity
• They are typically designed to quickly filter stormwater and then discharge it to the local sewer system

Benefits:
• Improved aesthetics
• Improved air quality
• Creation of wildlife habitat
• Increased groundwater infiltration and recharge
• Reduced heat island effect
Stormwater Tree Pits/Street Trees

Storage System
Pervious Pavements

These surfaces include pervious concrete, porous asphalt, interlocking concrete pavers, and grid pavers. These materials allow water to quickly pass through the material into an underlying layered system of stone that holds the water, allowing it to infiltrate into the underlying uncompacted soil.
Pervious Pavement

How it works:

• Underlying stone reservoir
• Porous asphalt and pervious concrete are manufactured without "fine" materials to allow infiltration
• Grass pavers are concrete interlocking blocks with open areas
• Ideal application for porous pavement includes treating a low traffic or overflow parking area

Benefits:

• Manage stormwater runoff, minimize site disturbance, promote groundwater recharge
• Low life cycle costs, alternative to costly traditional stormwater management methods
• Contaminant removal as water moves through layers of system
• Allows runoff to flow through the surface to an underlying storage layer

Storage System
Porous Asphalt
It is common to design porous asphalt in the parking stalls of a parking lot. This saves money and reduces wear.

Drainage Area
The drainage area of the porous asphalt system is the conventional asphalt cartway and the porous asphalt in the parking spaces. Runoff from the conventional asphalt flows into the porous asphalt parking spaces.

Underdrain
Systems with low infiltration rates due to soil composition are often designed with an underdrain system to discharge the water.

Asphalt
This system is often designed with conventional asphalt in areas of high traffic to prevent any damage to the system.

Subgrade
Porous pavements are unique because of their subgrade structure. This structure includes a layer of choker course, filter course, and soil.
Pervious Pavement

Storage System
Porous Pavement at Yorkship School (Asphalt)

Storage System
Porous Pavement at Wiggins School (Concrete)

Storage System
MAINTENANCE PROCEDURES
Rain Garden/Bioretention System Maintenance

- Remove litter, weeds, water, mulch, and trim
- Inspect for sediment build up, the health of the vegetation, and erosion
- Clean out and inspect outlets, inlets, overflow risers, etc.
- Keep inlets free and clear so water does not bypass the system
Landscape Maintenance

• Trees
 – Watering
 – Pruning

• Vegetation
 – Weeding
 – Mulching
 – Watering
 – Pruning/cutback
 – Landscape replacement
Landscape Maintenance

• General Maintenance
 – Frequency:
 • Annually
 – Tools and supplies:
 • Trash bags, gloves, shovels
 – Soil amendment with organic matter:
 • Years 2 and 4
 • Apply 2 inches of compost into 2 inches of top soil
 • No contact with exposed roots or the trunk of the tree/shrub
 – Keep weed whackers and lawn mowers more than 2 feet from the trunk
Landscape Maintenance

- Pruning (improves the strength of plants, prevents pest problem, improves safety/security for residents/visitors, reduces future maintenance)
 - Frequency:
 - Year one remove damaged and dead branches
 - Year three correction of structural issues
 - Tools and supplies:
 - Trash bags, gloves, saw, pruners, loppers
Landscape Maintenance

- Maintenance of Vegetation
 - Frequency:
 - Checking vegetation for damage caused by a lawnmower, string trimmers, edger, or other power equipment
 - Weeding: early and often - 3x spring, 1x fall and summer
 - Pull weeds from their roots, use a tool if it is difficult
 - Avoid compacting the soil and other plants
 - Remove invasive plants
 - Tools and supplies:
 - Trash bags, gloves, shovels, trowels, weed id guide
Types of Common Invasive Plants:

- Asiatic Bittersweet
- Japanese Stilt Grass
- Japanese Honeysuckle

http://www.invasivespeciesinfo.gov/unitedstates/nj.shtml
Types of Common Invasive Plants:

- Garlic Mustard
- Mugwort
- Multiflora Rose

http://www.invasivespeciesinfo.gov/unitedstates/nj.shtml
Landscape Maintenance

- **Mulching**
 - Frequency:
 - apply 2-3 inches of mulch in the spring
 - Keep mulch away from the stem of the plants
 - May need to remove or mix up old mulch that is already there
 - Tools and supplies:
 - Trash bags, gloves, shovels, hardwood mulch
Landscape Maintenance

- Watering:
 - Frequency:
 - 1 inch the first week installed
 - ½ inch the first 4-6 weeks of the growing season for years 2 and 3 and for drought in years 2 and 3
 - Water the roots not the leaves
 - Soil should be moist 2-3 inches below grade
 - Properly used hoses are more efficient than sprinklers
 - Tools and supplies:
 - Hose and water source
 - Gator bags

Vegetative System
Landscape Maintenance

- Removal of dead vegetation:
 - Frequency:
 - After winter ends but before new growth appears in the spring
 - Tools and supplies:
 - Trash bags, gloves, gardening scissors, clippers
- Landscape Cutback:
 - Fall cleanup includes cutting perennials back 4 inches above the ground
 - Some plants like Iris shouldn’t be cut back while they are still green
Landscape Maintenance

• Landscape Plant Replacement (Involves replacing dead, missing, dead or diseased plants)
 – Frequency:
 • Planting should be done in the spring or the fall
 – Tools and supplies:
 • Trash bags, gloves, shovels, replacement plants
Inlet and Outlet Maintenance

1) Inspect:
 - Remove catch basin lid/grate with manhole pick and visually inspect for evidence of defects and deterioration
 - Record observations

2) Clean Structure:
 - Use an industrial vacuum or vacuum truck hose to remove any collected materials
 - Inspect hardware and replace once inspected
 - Record observations

3) Replace lid/grate; and clean up
River Stone Specific Maintenance

- River Stone Maintenance
 - Remove trash or debris from the site
 - Remove weed growth
 - Rake out the rock to make it even and replenish the river stone if it seems shallow or needed
- Frequency:
 - Annually in the spring
- Tools and supplies:
 - Rack
 - River stone if there are some missing or not enough
 - Trash bags, gloves
Detention Basin Maintenance

1. Vegetation management
 - Mowing should be done where/when it is needed
 (traditionally, 10-14 times per year)
 Effective groundcovers must be kept healthy to prevent erosion and damage to the system

2. Debris and litter removal
 - Inlets and outlets should be regularly cleared of debris and litter to prevent obstructions and reduced efficiency of the system

3. Mechanical components maintenance
 - All mechanical equipment, such as gates, valves, locks, or other components must be kept in working order should an emergency arise

4. Inspections
 - Regular inspections by designated personnel, owner, or operator should be made and clear records kept
NJ BMP Maintenance Manual
Requirements

1. Identify person/s responsible for preventive and corrective maintenance
2. Identify specific preventive and corrective maintenance tasks and detailed information on specific structural components or nonstructural measures
3. Provide a schedule of regular inspections and tasks
4. Provide cost estimates of maintenance tasks
5. Include detailed logs of all preventive and corrective maintenance performed
6. Identify specialized tools or equipment needed
7. Recommend corrective responses if emergency arises
8. Provide guidance for safety during inspections and maintenance
9. Identify approved disposal and recycling sites and procedures for sediment, trash and debris
10. Include an as-built construction plan
See handout.
Overview of Maintenance Guidance

- One Template of Maintenance Plan
- Fourteen Templates of Field Manuals for Fourteen Types of Stormwater Management Measures
- One Template of Maintenance Log
Additional Best Management Practices Maintenance Procedures
Cistern / Rain Barrel Maintenance

• Release the water in the cistern/barrel before the next rain event
• Rain barrels, cisterns, and downspouts should be inspected and cleaned regularly
• Seals on the infrastructure need to be inspected to prevent mosquito infestation
• Winterize
Cistern/ Rain Barrel Maintenance

- Cistern/Rain Barrel (provides supplemental water supply for irrigation and other nonpotable water use)
 - Frequency:
 - Annually release all the water before the winter
 - Tools and supplies:
 - Trash bags, gloves, wrench
 - Procedure:
 - Refer to guidance document in handout
Planter Box Maintenance

• Apply mulch / stone
• Install plantings
• Remove weeds
• Check/maintain inflow
• Keep overflow clear of debris
• Ensure proper drainage
• Winterize
Permeable Pavement Maintenance

- Porous Pavement Vacuuming
- Porous Pavement Power Washing
- Porous Paver Maintenance (Restoring Aggregate)
- Winter Maintenance for Porous Pavement
Permeable Pavement Maintenance

- Permeable Pavement Vacuuming (process removes sediment which can lead to clogging of the porous surface which prevents infiltration of water)
 - Frequency:
 - Semi Annually for Porous Asphalt, Porous Concrete, Flexible Porous Pavement
 - Annually for Porous Pavers
 - Tools and supplies:
 - Porous pavement vacuum
 - Water source
 - Trash bags, gloves, safety cones, street broom
Permeable Pavement Maintenance

• Porous Pavement Power Washing (should be done if pavement is clogged; NEVER power wash porous pavers)
 – Frequency:
 • Once every three years
 • Power wash after thorough vacuuming
 • Perform task in the spring
 – Tools and supplies:
 • Power washer
 • Water source
 • Trash bags, gloves, safety cones, street broom
Permeable Pavement Maintenance

Porous Pavers Maintenance

1) Inspect:
 • Look for damage to the surface of the porous pavement (clogs)
 • Record observations in maintenance report log

2) Prepare Site:
 • Dispose of trash and debris
 • Sweep away any loose debris

3) Clean out clogged Voids
 • Use a manhole pick to clean out the voids till you are able to see clean aggregate
Permeable Pavement Maintenance

Porous Pavers Maintenance (restoring aggregate)

- Frequency:
 - When gravel infill is less then ½ inch of the paver surface
 - Perform after vacuuming

- Tools and supplies:
 - Shovel, manhole pick, wheelbarrow
 - Cleaned washed small aggregate
 - Trash bags, gloves, safety cones, street broom
Permeable Pavement Maintenance

• Winter Maintenance for Permeable Pavements Procedures
 – Frequency:
 • As necessary following snowfall and/or icy conditions
 – Tools and supplies:
 • Truck with snow plow
 • Salt
 • Hand shovel
Permeable Pavement Maintenance

Winter Maintenance for Porous Pavements

Procedures

1) Inspect:
 - If location is no longer visible, look at site plan to identify where it’s located
 - Locate obstacles like speed bumps, bushes, trees so the snowplow can be raised
 - Record observations in maintenance report log

2) Plow Site:
 - Use a rubber plow blade
 - Plow 1” above the pavement to prevent hitting the plow on an edge or a paver and ripping it up

3) Storage of snow piles:
 - Don’t store snow piles on top of porous pavement surfaces; move the snow piles on lawn or non-porous pavement

4) Salting
 - Use in moderation

5) Record observations in maintenance report log and clean up
TROUBLESHOOTING AND PLANNING
Issues and Concerns: Vehicle Safety

- Branches/debris in roadway or parking area
- Lines of sight at intersections or parking areas
- Water overflow and icing in the roadway
Issues and Concerns: Sediment & Debris

- Trash accumulation
- Sediment accumulation
- Erosion
- Dumping
- Road salt and sand
- Bare soils
Issues and Concerns: Clogging

- Leaves and plant material
- Sediment
- Debris
- Ponding
- Filter screen or fabric
- Stone
Issues and Concerns: Ponding

- Standing water for more than 72 hours
- Saturated soils
- Plant loss
- Poor soil infiltration
- High groundwater
- Insufficient drain piping
- Too much water
Issues and Concerns: Winterizing a Cistern

- Drain all piping, storage drums, and fixtures
- Clean all filters and screens
- Divert flow from storage tanks
Planning for Maintenance: Prescriptive Schedules

- A defined frequency for required maintenance tasks
- Set schedule
- Clear plan
- Straight forward budget
- Refer to the Green Infrastructure Maintenance Log
Green Infrastructure Maintenance Log

GREEN INFRASTRUCTURE MAINTENANCE LOG

<table>
<thead>
<tr>
<th>Practice:</th>
<th>Year:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Inspection Date</th>
<th>Initial</th>
<th>Observation Notes:</th>
<th>Contact RCE:</th>
<th>Last Rain Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>February</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>March</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>April</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>August</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>September</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>October</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>November</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>December</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

By initialing this document, I agree that I have inspected the above referenced green infrastructure practice on the dates listed above and have abided by the maintenance guidelines provided by the Rutgers Cooperative Extension Water Resources Program.
Setting Prescriptive Schedule & Tasks

• Is the system working properly?
• Does the system meet appearance or aesthetic requirements?
• Are there any safety issues?
• Define routine tasks.
Planning for Maintenance: Adaptive Scheduling

- Relies on frequent or regular inspections to identify specific needs
- Flexible but undefined schedule
- Complete work as needed
- Focus on systems in most need
- More experience required
Planning for Maintenance: Staffing

- Requires a knowledge leader or crew chief
- Basic understanding of system function
- Knowledge of plant materials
- Ability to assess the system
- Observe, document, report
Planning for Maintenance: Staffing

• Ability to make minor repairs
• Ability to install replacement plantings
• Ability to communicate with the public
• Skills in adapting to a variety of conditions and sites
Planning for Maintenance: Tools & Equipment

- Basic landscape & gardening equipment (rakes, shovels, pitchforks, pruners)
- Wheel barrow
- Weed trimmer, edger
- Mower
- Trash bags and disposal
- Broom
Planning for Maintenance: Tools & Equipment

- Safety vest, tape, cones
- Gloves
- Tool box with basics:
 - Hammers
 - Pliers
 - Drills
 - Screwdrivers
 - Wrenches
 - Tape Measure
 - Cutters
Planning for Maintenance: Materials

- Mulch
- Plantings
- Seed mix
- Topsoil
- Stone
- Filter Fabric
- Trash bags
- Erosion control blanket
Planning for Maintenance: Documenting Maintenance Activity

- Maintenance Report Form
- Digital Camera
- Pen & Paper
- Clip Board
Planning for Maintenance: Documenting Maintenance Activity

Rain Garden Inspection Form

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Inspector:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Name:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of Inspection:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>County:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When was the last it rained?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>How much inches</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rain Garden Inspection (please check)

<table>
<thead>
<tr>
<th>Question</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Are there educational signs within the garden?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are there weeds (plants that do not belong there) within the garden?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If yes, are the weeds invasive?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are the plants in the garden healthy?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For example: Is there any leaf discoloration, fungal growth on the leaves, or pests?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are some plants overshadowing other plants or are certain plants over-taking the other plants within the garden?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is there litter within the garden?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is there sediment accumulation within the garden?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If yes, sediment accumulation only in one area or throughout the garden?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is there sediment accumulation on the plants within the garden?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If yes, how many plants are covered with sediment? Please describe:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Notes:

<table>
<thead>
<tr>
<th>Question</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there evidence of gullying or erosion within the garden?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If yes, where is the gullying mostly occurring? Describe & take photos.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is there evidence that the mulch has washed away within the garden?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If yes, take photographs of exposed areas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are gutters or pipesentering and exiting the garden clear of debris?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If no, take photographs of clogged gutters or pipes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is runoff free to enter the garden without any obstructions?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If no, take photographs of areas of blocked flow within the garden.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take measurements: drainage area and rain garden footprint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage area ________ ft²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of drainage area: ________ (roof, parking lot, driveway, sidewalk, grassed area, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Footprint ________ ft²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is there empty space in the garden?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If yes, estimate how many plants would be needed to fill the gaps.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Say cheese!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take photographs of the rain garden from all angles</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Green Infrastructure Champions Program

This program is partially funded by the Rutgers New Jersey Agricultural Experiment Station, The Geraldine R. Dodge Foundation, and NJ Sea Grant Consortium and is a collaboration of the Rutgers Cooperative Extension Water Resources Program and the Green Infrastructure Subcommittee of Jersey Water Works.