

Impervious Cover Reduction Action Plan for Bloomsbury Borough, Hunterdon County, New Jersey

Prepared for Bloomsbury Borough by the Rutgers Cooperative Extension Water Resources Program

August 9, 2021

ACKNOWLEDGEMENTS:

This document has been prepared by the Rutgers Cooperative Extension Water Resources Program, with funding and direction from the National Fish and Wildlife Foundation [NFWF GRANT ID: 0403.19.065576] and the New Jersey Agricultural Experiment Station, to highlight green infrastructure opportunities within Bloomsbury Borough. We would like to thank the National Fish and Wildlife Foundation, the New Jersey Agricultural Experiment Station, and Bloomsbury Borough for their input and support in creating this document.

RUTGERS New Jersey Agricultural Experiment Station

Table of Contents

Introduction	1
Methodology	1
Green Infrastructure Practices	8
Potential Project Sites	10
Conclusion	11
Appendix A: Climate Resilient Green Infrastructure	

- a. Green Infrastructure Sites
- b. Proposed Green Infrastructure Concepts
- c. Summary of Existing Conditions
- d. Summary of Proposed Green Infrastructure Practices

Introduction

Located in Hunterdon County, New Jersey, Bloomsbury Borough covers approximately 0.96 square miles. Figures 1 and 2 illustrate that Bloomsbury Borough is dominated by urban land use. A total of 41.7% of the municipality's land use is classified as urban. Of the urban land in Bloomsbury Borough, medium density residential is the dominant land use (Figure 3).

The New Jersey Department of Environmental Protection's (NJDEP) 2015 land use/land cover geographical information system (GIS) data layer categorizes Bloomsbury Borough into many unique land use areas, assigning a percent impervious cover for each delineated area. These impervious cover values were used to estimate the impervious coverage for Bloomsbury Borough. Based upon the 2015 NJDEP land use/land cover data, approximately 19.5% of Bloomsbury Borough has impervious cover. This level of impervious cover suggests that the streams in Bloomsbury Borough are likely impacted streams.¹

Methodology

Bloomsbury Borough contains a portion of one subwatershed (Figure 4). For this impervious cover reduction action plan (RAP), projects have been identified in the one subwatershed. Aerial imagery initially was studied to identify potential project sites that contain extensive impervious cover. Field inspections were conducted to determine if viable options exist at the sites to reduce impervious cover or to disconnect impervious surfaces from draining directly to the local waterway or storm sewer system. During the field inspections, appropriate green infrastructure practices for the sites were recommended. Sites that already had green infrastructure stormwater management practices in place were not considered.

¹ Schuler, T.R., L. Fraley-McNeal, and K. Cappiella. 2009. Is Impervious Cover Still Important? Review of Recent Research. *Journal of Hydrologic Engineering* 14 (4): 309-315.

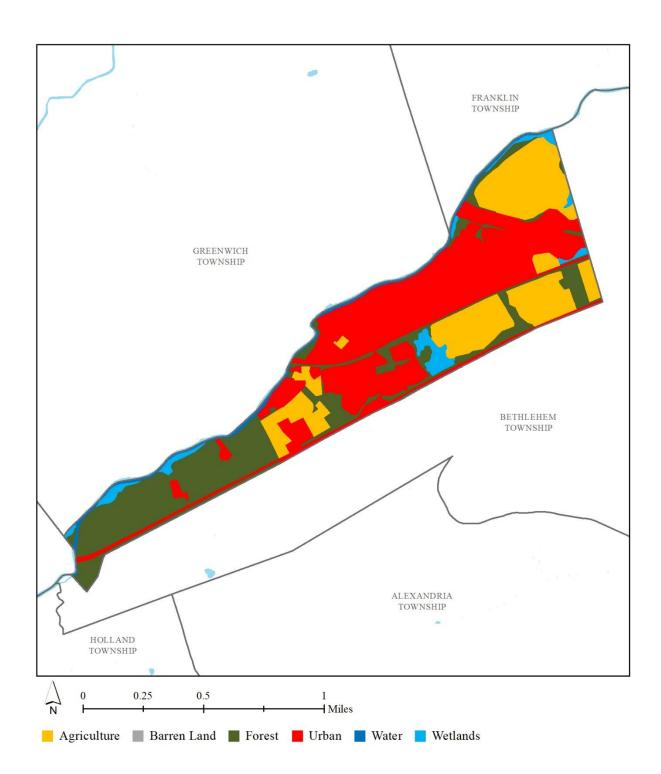


Figure 1: Map of land use in Bloomsbury Borough

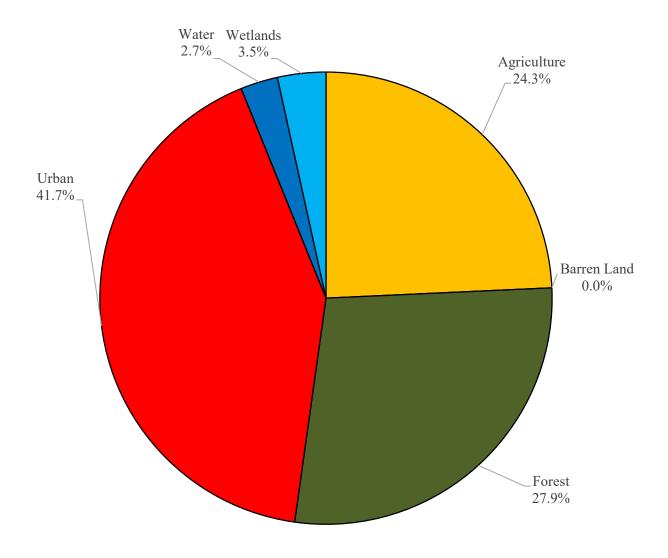


Figure 2: Pie chart illustrating the land use in Bloomsbury Borough

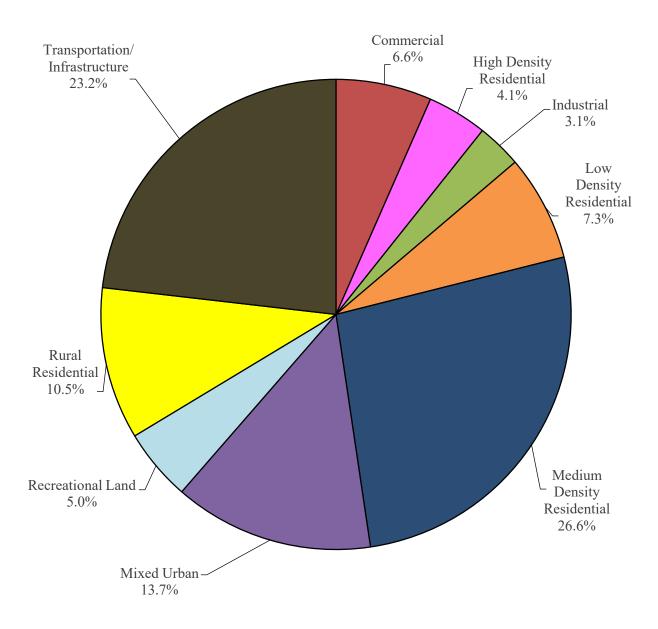


Figure 3: Pie chart illustrating the various types of urban land use in Bloomsbury Borough

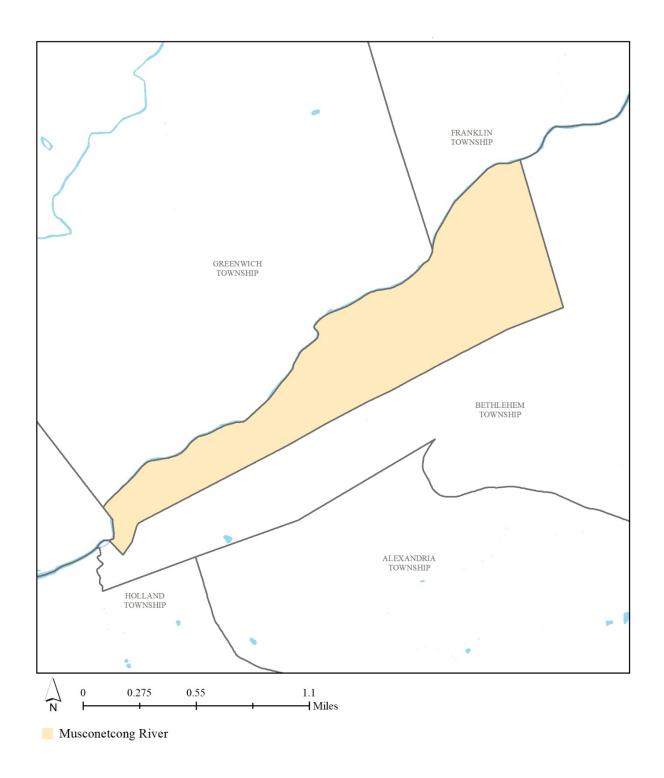


Figure 4: Map of the subwatersheds in Bloomsbury Borough

For each potential project site, specific aerial loading coefficients for commercial land use were used to determine the annual runoff loads for total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) from impervious surfaces (Table 1). These are the same aerial loading coefficients that NJDEP uses in developing total maximum daily loads (TMDLs) for impaired waterways of the state. The percentage of impervious cover for each site was extracted from the 2015 NJDEP land use/land cover database. For impervious areas, runoff volumes were determined for the New Jersey water quality design storm (1.25 inches of rain over two hours) and for the average annual rainfall total of 44 inches.

Preliminary soil assessments were conducted for each potential project site identified in Bloomsbury Borough using the United States Department of Agriculture Natural Resources Conservation Service Web Soil Survey, which utilizes regional and statewide soil data to predict soil types in an area. Several key soil parameters were examined (e.g., natural drainage class, saturated hydraulic conductivity of the most limiting soil layer (K_{sat}), depth to water table, and hydrologic soil group) to evaluate the suitability of each site's soil for green infrastructure practices. In cases where multiple soil types were encountered, the key soil parameters were examined for each soil type expected at a site.

For each potential project site, drainage areas were determined for each of the green infrastructure practices proposed at the site. These green infrastructure practices were designed to manage the 2-year design storm, allowing for the capture of 95% of the annual rainfall. Runoff volumes were calculated for each proposed green infrastructure practice. The reduction in TSS loading was calculated for each drainage area for each proposed green infrastructure practice using the aerial loading coefficients in Table 1. The maximum volume reduction in stormwater runoff for each green infrastructure practice for a storm was determined by calculating the volume of runoff captured from the 2-year design storm. For each green infrastructure practice, peak discharge reduction potential was determined through hydrologic modeling in HydroCAD. For each green infrastructure practice, a cost estimate is provided. These costs are based upon the square footage of the green infrastructure practice and the real cost of green infrastructure practice implementation in New Jersey.

Table 1: Aerial Loading Coefficients ²	Table 1:	Aerial I	Loading	Coef	ficients ²
---	----------	----------	---------	------	-----------------------

Land Cover	TP load (lbs/acre/yr)	TN load (lbs/acre/yr)	TSS load (lbs/acre/yr)
High, Medium Density Residential	1.4	15	140
Low Density, Rural Residential	0.6	5	100
Commercial	2.1	22	200
Industrial	1.5	16	200
Urban, Mixed Urban, Other Urban	1.0	10	120
Agriculture	1.3	10	300
Forest, Water, Wetlands	0.1	3	40
Barrenland/Transitional Area	0.5	5	60

² New Jersey Department of Environmental Protection (NJDEP), Stormwater Best Management Practice Manual, February 2004, Page 3-11.

Green Infrastructure Practices

Green infrastructure is an approach to stormwater management that is cost-effective, sustainable, and environmentally friendly. Green infrastructure projects capture, filter, absorb, and reuse stormwater to maintain or mimic natural systems and to treat runoff as a resource. As a general principle, green infrastructure practices use soil and vegetation to recycle stormwater runoff through infiltration and evapotranspiration. When used as components of a stormwater management system, green infrastructure practices such as bioretention, green roofs, porous pavement, rain gardens, and vegetated swales can yield a variety of environmental benefits. In addition to effectively retaining and infiltrating rainfall, these practices can simultaneously help filter air pollutants, reduce energy demands, mitigate urban heat islands, and sequester carbon while also providing communities with aesthetic and natural resource benefits³. A wide range of green infrastructure practices have been evaluated for the potential project sites in Bloomsbury Borough. The practices are discussed below.

Disconnected downspouts

This is often referred to as simple disconnection. A downspout is simply disconnected from draining directly to the roadway or storm sewer system, and directed to discharge water to a pervious area (i.e., lawn).

Pervious pavements

There are several types of permeable pavement systems including porous asphalt, pervious concrete, permeable pavers, and grass pavers. These surfaces are hard and support vehicle traffic but also allow water to infiltrate through the surface. They are designed with an underlying stone layer to retain stormwater runoff and allow it to slowly seep into the ground.

³ United States Environmental Protection Agency (USEPA). 2015. Benefits of Green Infrastructure. <u>http://www.epa.gov/greeninfrastructure/benefits-green-infrastructure</u>

Bioretention systems/rain gardens

These are landscaped features that are designed to capture, treat, and infiltrate stormwater runoff. These systems can easily be incorporated into existing landscapes, improving aesthetics and creating wildlife habitat while managing stormwater runoff. Bioretention systems also can be used in soils that do not quickly infiltrate by incorporating an underdrain into the system.

Downspout planter boxes

These are large wooden boxes that house a variety of water-retaining and/or filtering plants. When installed at the base of a downspout, water is captured by the plants which reduces stormwater runoff volume, provides a water source for the vegetation, and provides a small patch of habitat and food sources for birds and insects.

Rainwater harvesting systems (cistern or rain barrel)

These systems capture rainwater, mainly from rooftops, in cisterns or rain barrels. The water can then be used for watering gardens, washing vehicles, or for other non-potable uses.

Bioswale

Bioswales are landscape features that convey stormwater from one location to another while removing pollutants and providing water an opportunity to infiltrate. Bioswales are often designed for larger scale sites where water needs time to move and slowly infiltrate into the groundwater. Much like rain garden systems, bioswales can also be designed with an underdrain pipe that allows excess water to discharge to the nearest catch basin or existing stormwater system.

Stormwater planters

Stormwater planters are vegetated structures that are built into the sidewalk to intercept stormwater runoff from the roadway or sidewalk. Many of these planters are designed to allow the water to infiltrate into the ground while others are designed simply to filter the water and convey it back into the stormwater sewer system.

Tree filter boxes

These are pre-manufactured concrete boxes that contain a special soil mix and are planted with a tree or shrub. Tree filter boxes filter stormwater runoff but provide little storage capacity. They are typically designed to quickly filter stormwater and then discharge it to the local sewer system.

Potential Project Sites

Appendix A contains information on potential project sites where green infrastructure practices could be installed with a focus on existing site conditions. The recommended green infrastructure practices and the drainage area that the green infrastructure practices can treat are identified for each potential project site. For each practice, recharge potential, TSS removal potential, maximum volume reduction potential per storm, peak reduction potential, and estimated project costs are provided. This information will be especially useful in instances where proposed development projects cannot satisfy the New Jersey stormwater management requirements (N.J.A.C. 7:8).

Conclusion

This impervious cover reduction action plan is meant to provide the municipality with a blueprint for implementing green infrastructure practices that will reduce the impact of stormwater runoff from impervious surfaces. These projects can be implemented through a wide variety of volunteer groups, such as Boy Scouts, Girl Scouts, Municipal Green Teams, corporate volunteerism, faithbased groups, school groups, watershed groups, and other active community organizations.

Additionally, development projects that are in need of providing off-site compensation for stormwater impacts can use the projects in this plan as a starting point. The municipality can quickly convert this green infrastructure action plan into a stormwater mitigation plan and incorporate it into the municipal stormwater control ordinance.

Appendix A: Climate Resilient Green Infrastructure a. Green Infrastructure Sites

BLOOMSBURY: GREEN INFRASTRUCTURE SITES

SITES WITHIN THE MUSCONETCONG RIVER SUBWATERSHED

- 1. Bloomsbury Hose Co. Station 43
- 2. Bloomsbury Island
- 3. Bloomsbury Municipal Park
- 4. Bloomsbury Public School
- 5. Bloomsbury United Methodist Church
- 6. Roman Catholic Church of the Annunciation
- 7. Farmers Insurance Gary Burdick
- 8. First Presbyterian Church of Bloomsbury
- 9. RLS Financial Services
- 10. Siris Pharmaceutical Services
- 11. USPS

b. Proposed Green Infrastructure Concepts

BLOOMSBURY HOSE CO. STATION 43

Subwatershed:	MUSCONETCONG RIVER SUBWATERSHED SITES
Site Area:	19,105 sq. ft.
Address:	91 Brunswick Avenue Bloomsbury, NJ 08804
Block and Lot:	Block 20, Lot 1

Parking spaces in the parking lot to the east of the building can be converted to porous pavement to capture and infiltrate stormwater runoff from the parking lot and the street. A cistern can be installed northeast of the building to capture and store runoff from the rooftop to be reused for non-potable uses. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

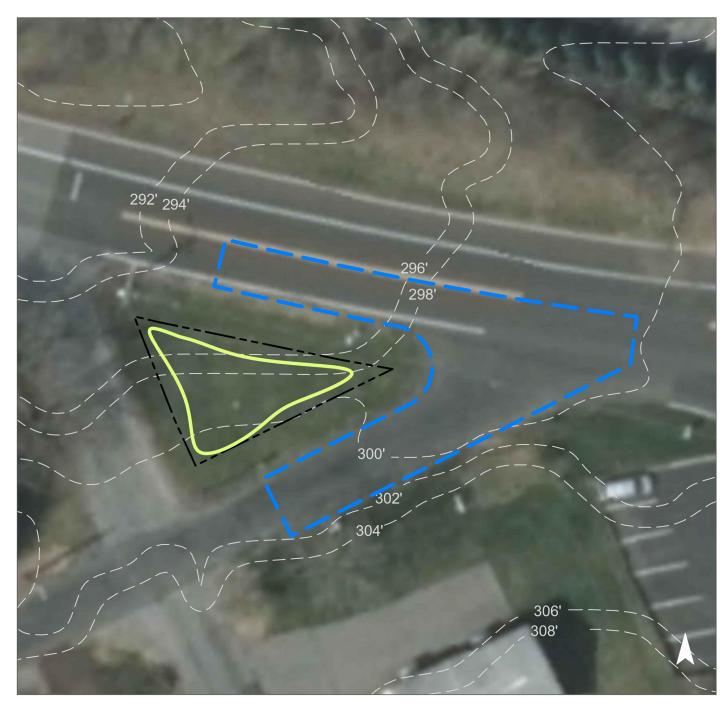
Impervio	ous Cover		sting Loads f vious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44"	
88	16,875	0.8	8.5	77.5	0.013	0.46	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavement	0.098	16	7,410	0.28	800	\$20,000
Rainwater harvesting	0.018	3	500	0.02	500 (gal)	\$1,000

Bloomsbury Hose Co. Station 43

- pervious pavement
 - rainwater harvesting
- **C** drainage area
- [] property line
 - 2015 Aerial: NJOIT, OGIS

BLOOMSBURY ISLAND


Subwatershed:	MUSCONETCONG RIVER SUBWATERSHED SITES
Site Area:	1,715 sq. ft.
Address:	956-960 NJ-173 Bloomsbury, NJ 08804
Block and Lot:	Block 33, Lot 1

A rain garden can be installed inside the island to capture, treat, and infiltrate stormwater runoff from the street. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Imperv	ious Cover		sting Loads f vious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44"	
45	780	0.0	0.4	3.6	0.001	0.02	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.113	19	8,590	0.32	1,090	\$5,450

Bloomsbury Island

- bioretention system
- **drainage area**
- [] property line
- 2015 Aerial: NJOIT, OGIS

BLOOMSBURY MUNICIPAL PARK

Subwatershed:	MUSCONETCONG RIVER SUBWATERSHED SITES		
Site Area:	68,500 sq. ft.	A REAL PROPERTY OF THE REAL PR	
Address:	100 County Road 579 Bloomsbury, NJ 08804		
Block and Lot:	Block 5, Lot 1		

Parking spaces in the northeast part of the parking lot can be converted to porous pavement to capture and infiltrate stormwater runoff from the parking lot. A rain garden can be installed to the north of the building to capture, treat, and infiltrate stormwater runoff from the roof. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

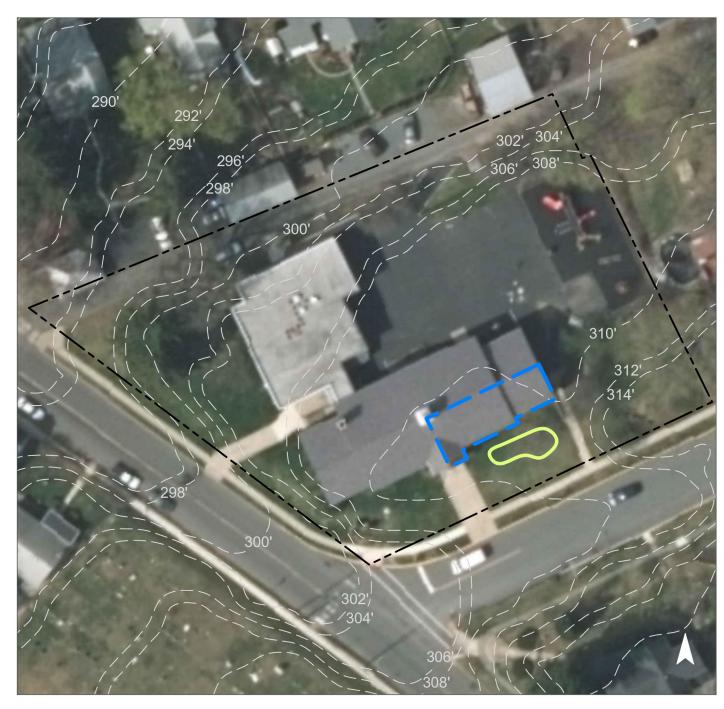
Impervi	ous Cover		sting Loads f vious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44"	
52	35,695	1.7	18.0	163.9	0.028	0.98	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.020	3	1,480	0.06	190	\$950
Pervious pavement	0.079	13	5,990	0.23	1,400	\$35,000

Bloomsbury Municipal Park

- bioretention system
- pervious pavement
- C drainage area
- **[]** property line
 - 2015 Aerial: NJOIT, OGIS

BLOOMSBURY PUBLIC SCHOOL


Subwatershed:	MUSCONETCONG RIVER SUBWATERSHED SITES
Site Area:	46,115 sq. ft.
Address:	20 Main Street Bloomsbury, NJ 08804
Block and Lot:	Block 16, Lot 11

A rain garden can be installed in the turfgrass area south of the building to capture, treat, and infiltrate stormwater runoff from the roof. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	Impervious Cover		sting Loads f vious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44"	
74	34,270	1.7	17.3	157.3	0.027	0.94	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.038	6	2,910	0.11	370	\$1,850

Bloomsbury Public School

- bioretention system
- **C** drainage area
- [] property line
- 2015 Aerial: NJOIT, OGIS

BLOOMSBURY UNITED METHODIST CHURCH

Subwatershed:	MUSCONETCONG RIVER SUBWATERSHED SITES
Site Area:	46,115 sq. ft.
Address:	61 Church Street Bloomsbury, NJ 08804
Block and Lot:	Block 14, Lot 11

Parking spaces in the parking lot to the south of the building can be converted to porous pavement to capture and infiltrate stormwater runoff from the parking lot and the street. A rain garden can be installed in the turfgrass area north of the building to capture, treat, and infiltrate stormwater runoff from the roof. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

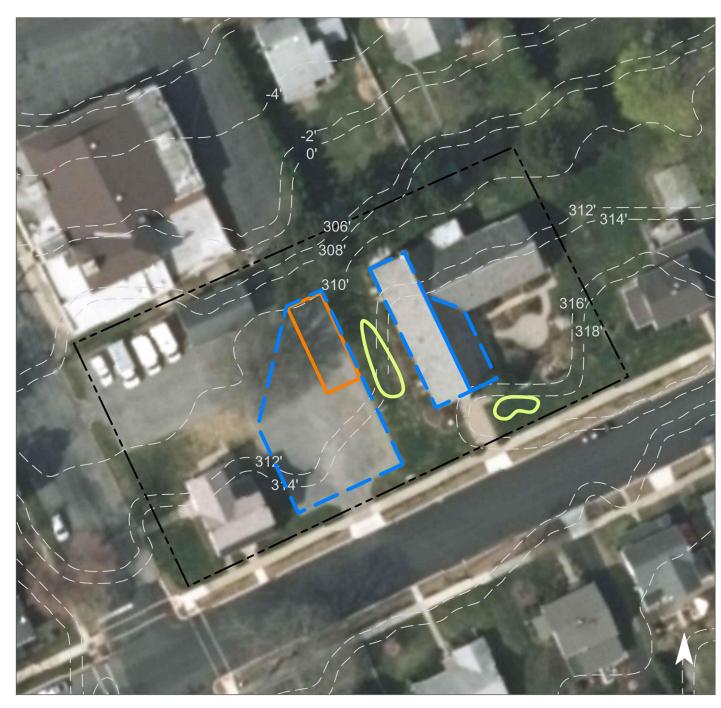
Impervio	ous Cover		sting Loads f vious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality StormFor an Annual Rainfall		
33	14,750	0.7	7.4	67.7	0.011	0.40	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.036	6	2,690	0.10	340	\$1,700
Pervious pavement	0.046	8	3,500	0.13	800	\$20,000

Bloomsbury United Methodist Church

- bioretention system
- pervious pavement
- **C** drainage area
- **[]** property line
 - 2015 Aerial: NJOIT, OGIS

ROMAN CATHOLIC CHURCH OF THE ANNUNCIATION


Subwatershed:	MUSCONETCONG RIVER SUBWATERSHED SITES
Site Area:	34,450 sq. ft.
Address:	80 Main Street Bloomsbury, NJ 08804
Block and Lot:	Block 20, Lots 2 & 4

Parking spaces in the parking lot to the west of the building can be converted to porous pavement to capture and infiltrate stormwater runoff from the parking lot and the street. Two rain gardens can be installed to the south and west of the building to capture, treat, and infiltrate stormwater runoff from the roof. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

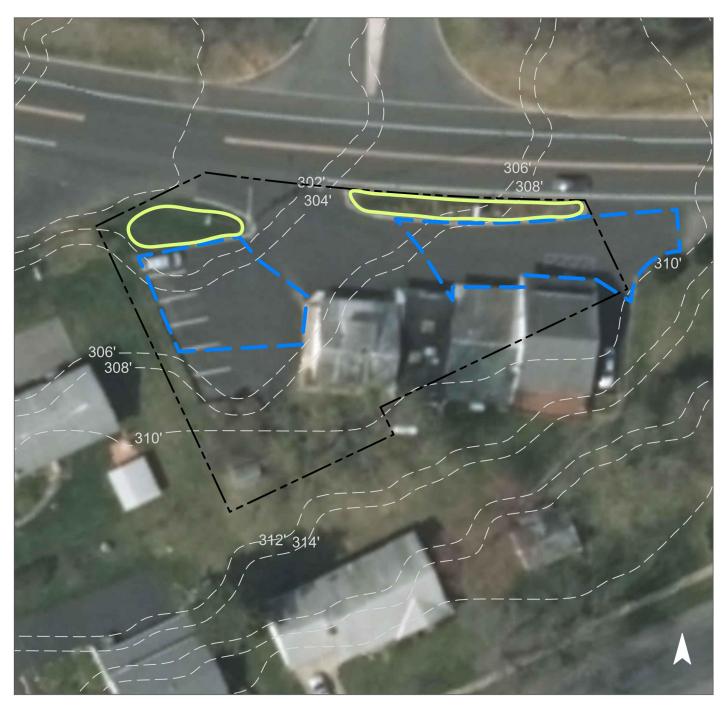
Impervio	ous Cover		sting Loads f vious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm For an Annual Rainfall o		
64	22,055	1.1	11.1	101.3	0.017	0.60	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.060	10	4,570	0.17	580	\$2,900
Pervious pavement	0.130	22	9,870	0.37	1,000	\$25,000

Roman Catholic Church of the Annunciation

- bioretention system
- pervious pavement
- **[]** drainage area
- [] property line
- 2015 Aerial: NJOIT, OGIS

FARMERS INSURANCE - GARY BURDICK


Subwatershed:	MUSCONETCONG RIVER SUBWATERSHED SITES
Site Area:	15,115 sq. ft.
Address:	962 NJ-173 Bloomsbury, NJ 08804
Block and Lot:	Block 27, Lot 4

Two rain gardens can be installed in the turfgrass islands north of the parking lot to capture, treat, and infiltrate stormwater runoff from the parking lot. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	ous Cover		sting Loads f vious Cover (Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality StormFor an Annual Rainfall		
45	6,870	0.3	3.5	31.5	0.005	0.19	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.133	22	10,110	0.38	1,280	\$6,400

Farmers Insurance – Gary Burdick

- bioretention system
- **C** drainage area
- [] property line
 - 2015 Aerial: NJOIT, OGIS

FIRST PRESBYTERIAN CHURCH OF BLOOMSBURY

Subwatershed:	MUSCONETCONG RIVER SUBWATERSHED SITES		
Site Area:	85,765 sq. ft.	No the second way i	
Address:	66 Church Street Bloomsbury, NJ 08804		RILLE
Block and Lot:	Block 15, Lot 14		

A rain garden can be installed in the turfgrass area north of the building to capture, treat, and infiltrate stormwater runoff from the roof. Porous pavement can be installed in the parking lot to capture, treat, and infiltrate stormwater runoff from the parking lot. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	ous Cover		sting Loads f vious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality StormFor an Annual Rainfall of		
27	23,130	1.1	11.7	106.2	0.018	0.63	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.023	4	1,730	0.06	220	\$1,100
Pervious pavement	0.146	24	11,060	0.42	1,000	\$25,000

First Presbyterian Church of Bloomsbury

- bioretention system
- pervious pavement
- **C** drainage area
- [] property line
 - 2015 Aerial: NJOIT, OGIS

RLS FINANCIAL SERVICES

Subwatershed:	MUSCONETCONG RIVER SUBWATERSHED SITES
Site Area:	15,110 sq. ft.
Address:	86 North Street Bloomsbury, NJ 08804
Block and Lot:	Block21, Lot 4

A rain garden can be installed in the turfgrass area west of the building to capture, treat, and infiltrate stormwater runoff from the roof. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	Impervious Cover		sting Loads f vious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality StormFor an Annual Rainfall of		
76	11,530	0.6	5.8	52.9	0.009	0.32	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.013	2	990	0.04	125	\$625

RLS Financial Services

- bioretention system
- **C** drainage area
- [] property line
- 2015 Aerial: NJOIT, OGIS

SIRIS PHARMACEUTICAL SERVICES

Subwatershed:	MUSCONETCONG RIVER SUBWATERSHED SITES
Site Area:	52,630 sq. ft.
Address:	75 North Street Bloomsbury, NJ 08804
Block and Lot:	Block 8, Lot 2

Parking spaces in the parking lot to the east of the building can be converted to porous pavement to capture and infiltrate stormwater runoff from the parking lot. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

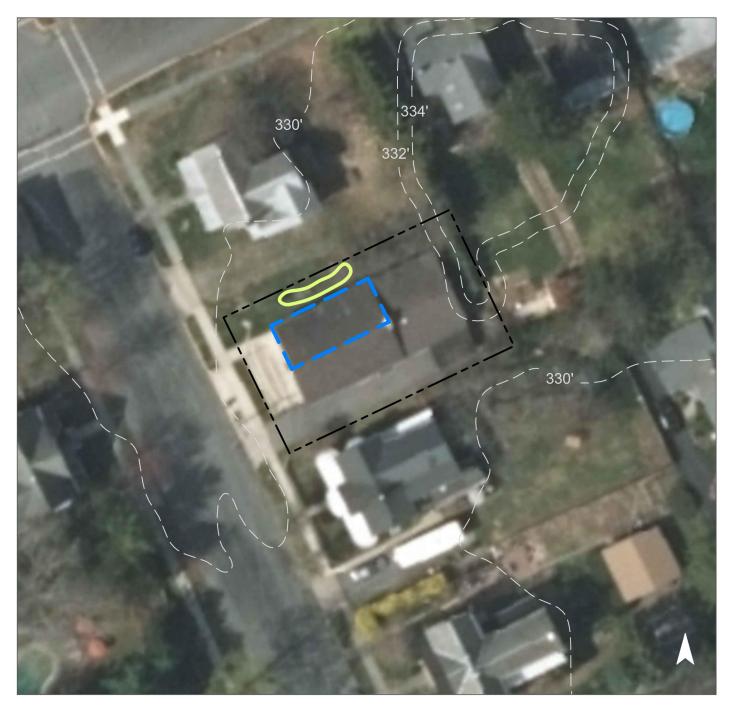
Impervio	ous Cover		sting Loads f vious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm For an Annual Rainfall of		
77	40,565	2.0	20.5	186.2	0.032	1.11	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavement	0.140	23	10,590	0.40	1,000	\$25,000

Siris Pharmaceutical Services

- pervious pavement
- **C** drainage area
- [] property line
 - 2015 Aerial: NJOIT, OGIS

USPS


Subwatershed:	MUSCONETCONG RIVER SUBWATERSHED SITES
Site Area:	6,520 sq. ft.
Address:	53 Center Street Bloomsbury, NJ 08804
Block and Lot:	Block 19, Lot 1

A rain garden can be installed in the turfgrass area north of the building to capture, treat, and infiltrate stormwater runoff from the roof. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	Impervious Cover		ting Loads f		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm For an Annual Rainfall of		
55	3,555	0.2	1.8	16.3	0.003	0.10	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.023	4	1,780	0.07	160	\$800

USPS

- bioretention system
- **C** drainage area
- [] property line
 - 2015 Aerial: NJOIT, OGIS

c. Summary of Existing Conditions

Summary of Existing Conditions

j									Existing A	Existing Annual Loads (Commercial)		Runoff Volumes from I.C.		Runoff Volumes from I.C.	
					i i		I.C.	I.C.	Existing Al			Water Quality Storm		Water Quality Storm	1 7
	Subwatershed/Site Name/Total Site Info/GI Practice	Area	Area	Block	Lot	I.C.	Area	Area	TP	TN	TSS	(1.25" over 2-hours)	Annual	(1.25" over 2-hours)	Annual
		(ac)	(SF)			%	(ac)	(SF)	(lb/yr)	(lb/yr)	(lb/yr)	(cu.ft.)	(cu.ft.)	(Mgal)	(Mgal)
	MUSCONETCONG RIVER SUBWATERSHED SITES	8.79	389,250				4.82	210,075	10.1	106.1	964.5	21,883	770,275	0.1637	5.762
1	Bloomsbury Hose Co. Station 43 Total Site Info	0.44	19,105	20	1	88	0.39	16,875	0.8	8.5	77.5	1,758	61,875	0.0131	0.463
2	Bloomsbury Island Total Site Info	0.04	1,715	33	1	45	0.02	780	0.0	0.4	3.6	81	2,860	0.0006	0.021
3	Bloomsbury Municipal Park Total Site Info	1.57	68,500	5	1	52	0.82	35,695	1.7	18.0	163.9	3,718	130,882	0.0278	0.979
4	Bloomsbury Public School Total Site Info	1.06	46,115	16	11	74	0.79	34,270	1.7	17.3	157.3	3,570	125,657	0.0267	0.940
5	Bloomsbury United Methodist Church Total Site Info	1.02	44,225	14	11	33	0.34	14,750	0.7	7.4	67.7	1,536	54,083	0.0115	0.405
6	Roman Catholic Church of the Annunciation Total Site Info	0.79	34,450	20	4, 2	64	0.51	22,055	1.1	11.1	101.3	2,297	80,868	0.0172	0.605
7	Farmers Insurance - Gary Burdick Total Site Info	0.35	15,115	27	4	45	0.16	6,870	0.3	3.5	31.5	716	25,190	0.0054	0.188
8	First Presbyterian Church of Bloomsbury Total Site Info	1.97	85,765	15	14	27	0.53	23,130	1.1	11.7	106.2	2,409	84,810	0.0180	0.634
9	RLS Financial Services Total Site Info	0.35	15,110	21	4	76	0.26	11,530	0.6	5.8	52.9	1,201	42,277	0.0090	0.316
10	Siris Pharmaceutical Services Total Site Info	1.21	52,630	8	2	77	0.93	40,565	2.0	20.5	186.2	4,226	148,738	0.0316	1.113
11	USPS Total Site Info	0.15	6,520	19	1	55	0.08	3,555	0.2	1.8	16.3	370	13,035	0.0028	0.098

d. Summary of Proposed Green Infrastructure Practices

Summary of Proposed Green Infrastructure Practices

		Potential Man	agement Area	Г		Max Volume	Peak Discharge					
			agement Area	Recharge	TSS Removal	Reduction	Reduction	Size of	Unit		Total	I.C.
	Subwatershed/Site Name/Total Site Info/GI Practice	Area	Area	Potential	Potential	Potential	Potential	BMP	Cost	Unit	Cost	Treated
	Subwatershed, Site Manie, Four Site Into, OFF factice	(SF)	(ac)	(Mgal/yr)	(lbs/yr)	(gal/storm)	(cfs)	DIAII	(\$/unit)	Om	(\$)	%
			(40)	(191gal/ y1)	(105/ 91)	(gai/storin)	(015)		(\\$\unit)		(4)	70
	MUSCONETCONG RIVER SUBWATERSHED SITES	42,850	0.98	1.116	187	83,770	3.16				\$172,775	20%
1	Bloomsbury Hose Co. Station 43											
	Pervious pavement	3,750	0.09	0.098	16	7,410	0.28	800	25	SF	\$20,000	22%
	Rainwater harvesting	675	0.02	0.018	3	500	0.02	500	2	gal	\$1,000	4%
	Total Site Info	4,425	0.10	0.115	19	7,910	0.30				\$21,000	22%
2	Bloomsbury Island											
	Bioretention system	4,350	0.10	0.113	19	8,590	0.32	1,090	5	SF	\$5,450	558%
	Total Site Info	4,350	0.10	0.113	19	8,590	0.32				\$5,450	558%
3	Bloomsbury Municipal Park											
	Bioretention system	750	0.02	0.020	3	1,480	0.06	190	5	SF	\$950	2%
	Pervious pavement	3,035	0.07	0.079	13	5,990	0.23	1,400	25	SF	\$35,000	9%
	Total Site Info	3,785	0.09	0.099	17	7,470	0.29				\$35,950	11%
4	Bloomsbury Public School											
	Bioretention system	1,475	0.03	0.038	6	2,910	0.11	370	5	SF	\$1,850	4%
	Total Site Info	1,475	0.03	0.038	6	2,910	0.11				\$1,850	4%
5	Bloomsbury United Methodist Church											
	Bioretention system	1,365	0.03	0.036	6	2,690	0.10	340	5	SF	\$1,700	9%
	Pervious pavement	1,775	0.04	0.046	8	3,500	0.13	800	25	SF	\$20,000	12%
	Total Site Info	3,140	0.07	0.082	14	6,190	0.23				\$21,700	21%
6	Roman Catholic Church of the Annunciation											
	Bioretention systems	2,315	0.05	0.060	10	4,570	0.17	580	5	SF	\$2,900	10%
	Pervious pavement	5,000	0.11	0.130	22	9,870	0.37	1,000	25	SF	\$25,000	23%
	Total Site Info	7,315	0.17	0.191	32	14,440	0.54				\$27,900	33%
7	Farmers Insurance - Gary Burdick											
	Bioretention systems	5,120	0.12	0.133	22	10,110	0.38	1,280	5	SF	\$6,400	75%
	Total Site Info	5,120	0.12	0.133	22	10,110	0.38				\$6,400	75%

Summary of Proposed Green Infrastructure Practices

		Potential Man	agement Area			Max Volume	Peak Discharge					
					TSS Removal	Reduction	Reduction	Size of	Unit		Total	I.C.
	Subwatershed/Site Name/Total Site Info/GI Practice	Area	Area	Potential	Potential	Potential	Potential	BMP	Cost	Unit	Cost	Treated
		(SF)	(ac)	(Mgal/yr)	(lbs/yr)	(gal/storm)	(cfs)		(\$/unit)		(\$)	%
8	First Presbyterian Church of Bloomsbury											
	Bioretention system	875	0.02	0.023	4	1,730	0.06	220	5	SF	\$1,100	4%
	Pervious pavement	5,600	0.13	0.146	24	11,060	0.42	1,000	25	SF	\$25,000	24%
	Total Site Info	6,475	0.15	0.169	28	12,790	0.48				\$26,100	28%
9	RLS Financial Services											
	Bioretention system	500	0.01	0.013	2	990	0.04	125	5	SF	\$625	4%
	Total Site Info	500	0.01	0.013	2	990	0.04				\$625	4%
10	Siris Pharmaceutical Services											
	Pervious pavement	5,365	0.12	0.140	23	10,590	0.40	1,000	25	SF	\$25,000	13%
	Total Site Info	5,365	0.12	0.140	23	10,590	0.40				\$25,000	13%
11	USPS											
	Bioretention system	900	0.02	0.023	4	1,780	0.07	160	5	SF	\$800	25%
	Total Site Info	900	0.02	0.023	4	1,780	0.07		-		\$ 800	25%