

Draft

Impervious Cover Reduction Action Plan for Springfield Township, Union County, New Jersey

Prepared for Springfield Township by the Rutgers Cooperative Extension Water Resources Program

November 16, 2015

Table of Contents

Introduction	1
Methodology	1
Green Infrastructure Practices	
Potential Project Sites	
Conclusion	

Attachment: Climate Resilient Green Infrastructure

- a. Overview Map of the Project
- b. Green Infrastructure Sites
- c. Proposed Green Infrastructure Concepts
- d. Summary of Existing Conditions
- e. Summary of Proposed Green Infrastructure Practices

Introduction

Located in Union County in central New Jersey, Springfield Township covers approximately 5.2 square miles. Figures 1 and 2 illustrate that Springfield Township is dominated by urban land uses. A total of 73.6% of the municipality's land use is classified as urban. Of the urban land in Springfield Township, medium density residential is the dominant land use (Figure 3).

The New Jersey Department of Environmental Protection's (NJDEP) 2007 land use/land cover geographical information system (GIS) data layer categorizes Springfield Township into many unique land use areas, assigning a percent impervious cover for each delineated area. These impervious cover values were used to estimate the impervious coverage for Springfield Township. Based upon the 2007 NJDEP land use/land cover data, approximately 31.0% of Springfield Township has impervious cover. This level of impervious cover suggests that the streams in Springfield Township are likely non-supporting streams.¹

Methodology

Springfield Township contains portions of four subwatersheds (Figure 4). For this impervious cover reduction action plan, projects have been identified in each of these watersheds. Initially, aerial imagery was used to identify potential project sites that contain extensive impervious cover. Field visits were then conducted at each of these potential project sites to determine if a viable option exists to reduce impervious cover or to disconnect impervious surfaces from draining directly to the local waterway or storm sewer system. During the site visit, appropriate green infrastructure practices for the site were determined. Sites that already had stormwater management practices in place were not considered.

¹ Caraco, D., R. Claytor, P. Hinkle, H. Kwon, T. Schueler, C. Swann, S. Vysotsky, and J. Zielinski. 1998. Rapid Watershed Planning Handbook. A Comprehensive Guide for Managing Urbanizing Watersheds. Prepared by Center For Watershed Protection, Ellicott City, MD. Prepared for U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds and Region V. October 1998

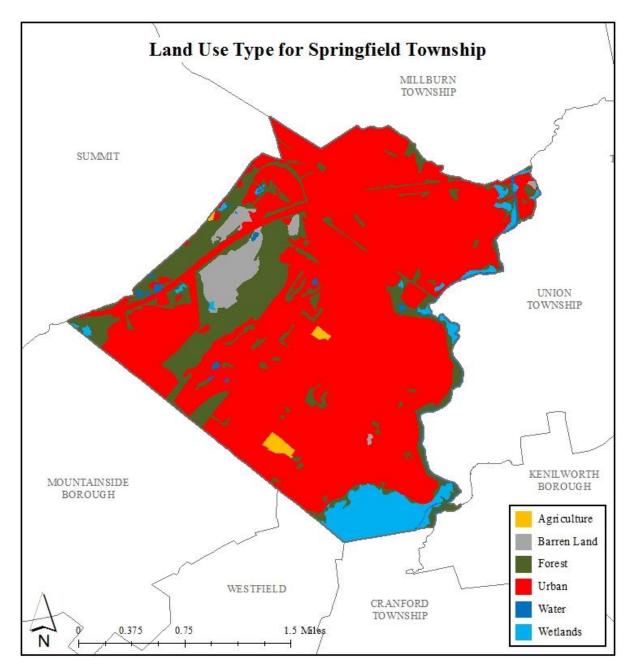


Figure 1: Map illustrating the land use in Springfield Township

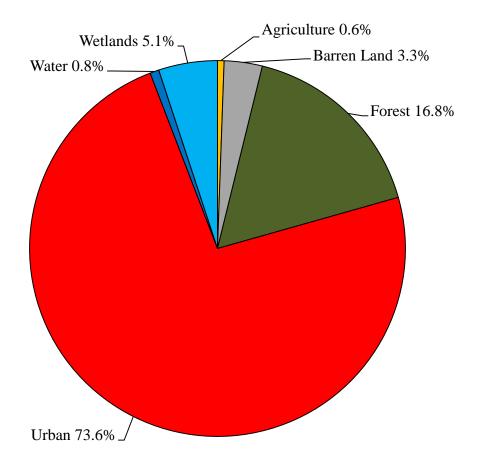


Figure 2: Pie chart illustrating the land use in Springfield Township

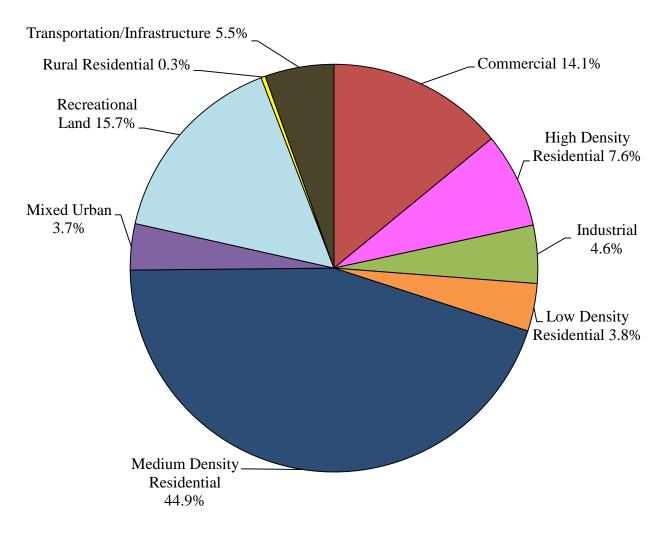


Figure 3: Pie chart illustrating the various types of urban land use in Springfield Township

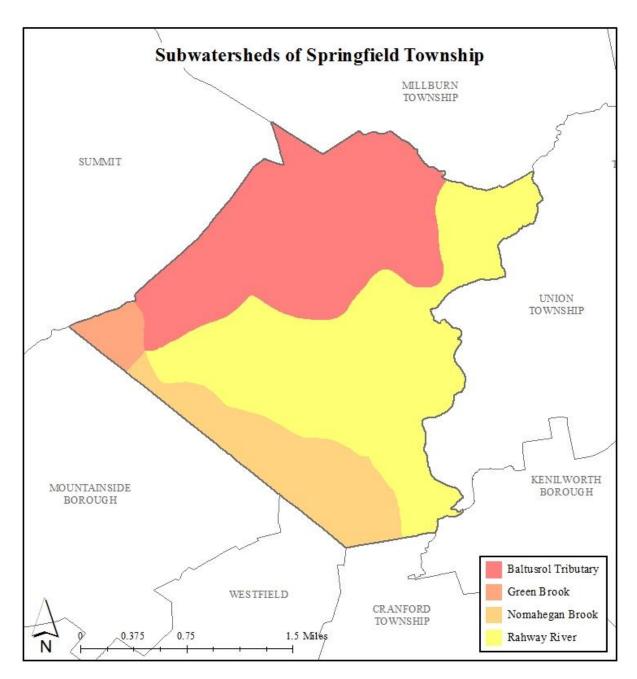


Figure 4: Map of the subwatersheds in Springfield Township

For each potential project site, specific aerial loading coefficients for commercial land use were used to determine the annual runoff loads for total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) from impervious surfaces (Table 1). These are the same aerial loading coefficients that NJDEP uses in developing total maximum daily loads (TMDLs) for impaired waterways of the state. The percentage of impervious cover for each site was extracted from the 2007 NJDEP land use/land cover database. For impervious areas, runoff volumes were determined for the water quality design storm (1.25 inches of rain over two-hours) and for the annual rainfall total of 44 inches.

Preliminary soil assessments were conducted for each potential project site identified in Springfield Township using the United States Department of Agriculture Natural Resources Conservation Service Web Soil Survey, which utilizes regional and statewide soil data to predict soil types in an area. Several key soil parameters were examined (e.g., natural drainage class, saturated hydraulic conductivity of the most limiting soil layer (K_{sat}), depth to water table, and hydrologic soil group) to evaluate the suitability of each site's soil for green infrastructure practices. In cases where multiple soil types were encountered, the key soil parameters were examined for each soil type expected at a site.

For each potential project site, drainage areas were determined for each of the green infrastructure practices proposed at the site. These green infrastructure practices were designed to manage the 2-year design storm, enabling these practices to capture 95% of the annual rainfall. Runoff volumes were calculated for each proposed green infrastructure practice. The reduction in TSS loading was calculated for each drainage area for each proposed green infrastructure practice using the aerial loading coefficients in Table 1. The maximum volume reduction in stormwater runoff for each green infrastructure practice for a storm was determined by calculating the volume of runoff captured from the 2-year design storm. For each green infrastructure practice, peak discharge reduction potential was determined through hydrologic modeling in HydroCAD. For each green infrastructure practice, a cost estimate is provided. These costs are based upon the square footage of the green infrastructure practice and the real cost of green infrastructure practice implementation in New Jersey.

Land Cover	TP load (lbs/acre/yr)	TN load (lbs/acre/yr)	TSS load (lbs/acre/yr)
High, Medium Density Residential	1.4	15	140
Low Density, Rural Residential	0.6	5	100
Commercial	2.1	22	200
Industrial	1.5	16	200
Urban, Mixed Urban, Other Urban	1.0	10	120
Agriculture	1.3	10	300
Forest, Water, Wetlands	0.1	3	40
Barrenland/Transitional Area	0.5	5	60

Table 1: Aerial Loading Coefficients²

² New Jersey Department of Environmental Protection (NJDEP), Stormwater Best Management Practice Manual, 2004.

Green Infrastructure Practices

Green infrastructure is an approach to stormwater management that is cost-effective, sustainable, and environmentally friendly. Green infrastructure projects capture, filter, absorb, and reuse stormwater to maintain or mimic natural systems and to treat runoff as a resource. As a general principal, green infrastructure practices use soil and vegetation to recycle stormwater runoff through infiltration and evapotranspiration. When used as components of a stormwater management system, green infrastructure practices such as bioretention, green roofs, porous pavement, rain gardens, and vegetated swales can produce a variety of environmental benefits. In addition to effectively retaining and infiltrating rainfall, these practices can simultaneously help filter air pollutants, reduce energy demands, mitigate urban heat islands, and sequester carbon while also providing communities with aesthetic and natural resource benefits³. A wide range of green infrastructure practices have been evaluated for the potential project sites in Springfield Township. Each practice is discussed below.

Disconnected downspouts

This is often referred to as simple disconnection. A downspout is simply disconnected, prevented from draining directly to the roadway or storm sewer system, and directed to discharge water to a pervious area (i.e., lawn).

Pervious pavements

There are several types of permeable pavement systems including porous asphalt, pervious concrete, permeable pavers, and grass pavers. These surfaces are hard and support vehicle traffic but also allow water to infiltrate through the surface. They have an underlying stone layer to store stormwater runoff and allow it to slowly seep into the ground.

³ United States Environmental Protection Agency (USEPA), 2013. Watershed Assessment, Tracking, and Environmental Results, New Jersey Water Quality Assessment Report. <u>http://ofmpub.epa.gov/waters10/attains_state.control?p_state=NJ</u>

Bioretention systems/rain gardens

These are landscaped features that are designed to capture, treat, and infiltrate stormwater runoff. These systems can easily be incorporated into existing landscapes, improving aesthetics and creating a wildlife habitat while managing stormwater runoff. Bioretention systems also can be used in soils that do not quickly infiltrate by incorporating an underdrain into the system.

Downspout planter boxes

These are wooden boxes with plants installed at the base of a downspout that provide an opportunity to beneficially reuse rooftop runoff.

Rainwater harvesting systems (cistern or rain barrel)

These systems capture rainwater, mainly from rooftops, in cisterns or rain barrels. The water can then be used for watering gardens, washing vehicles, or for other non-potable uses.

Bioswale

Bioswales are landscape features that convey stormwater from one location to another while removing pollutants and providing water an opportunity to infiltrate.

Stormwater planters

Stormwater planters are vegetated structures that are built into the sidewalk to intercept stormwater runoff from the roadway or sidewalk. Many of these planters are designed to allow the water to infiltrate into the ground while others are designed simply to filter the water and convey it back into the stormwater sewer system.

Tree filter boxes

These are pre-manufactured concrete boxes that contain a special soil mix and are planted with a tree or shrub. They filter stormwater runoff but provide little storage capacity. They are typically designed to quickly filter stormwater and then discharge it to the local sewer system.

Potential Project Sites

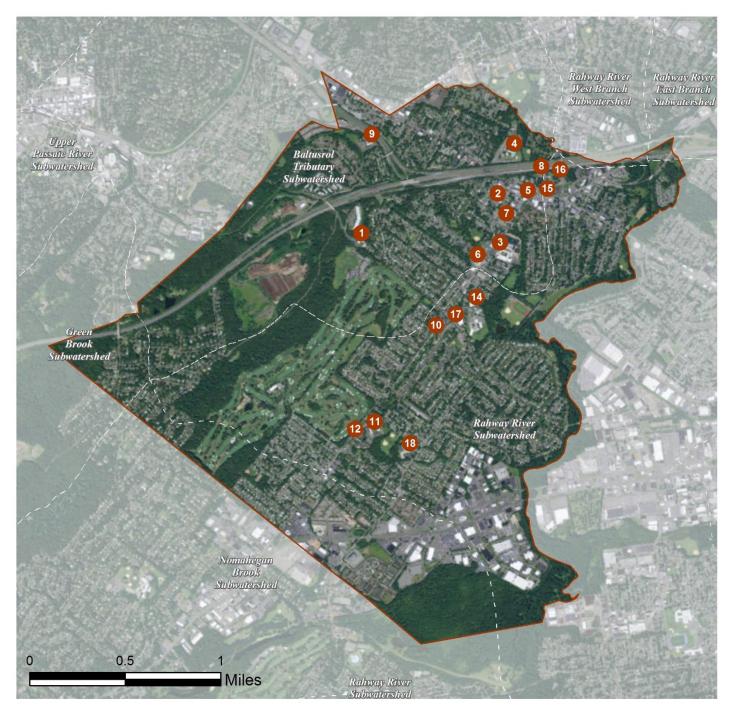
Attachment 1 contains information on potential project sites where green infrastructure practices could be installed. The recommended green infrastructure practice and the drainage area that the green infrastructure practice can treat are identified for each potential project site. For each practice, the recharge potential, TSS removal potential, maximum volume reduction potential per storm, and the peak reduction potential are provided. This information is also provided so that proposed development projects that cannot satisfy the New Jersey stormwater management requirements for major development can use one of the identified projects to offset a stormwater management deficit.⁴

⁴ New Jersey Administrative Code, N.J.A.C. 7:8, Stormwater Management, Statutory Authority: N.J.S.A. 12:5-3, 13:1D-1 et seq., 13:9A-1 et seq., 13:19-1 et seq., 40:55D-93 to 99, 58:4-1 et seq., 58:10A-1 et seq., 58:11A-1 et seq. and 58:16A-50 et seq., *Date last amended: April 19, 2010.*

Conclusion

This impervious cover reduction action plan is meant to provide the municipality with a blueprint for implementing green infrastructure practices that will reduce the impact of stormwater runoff from impervious surfaces. These projects can be implemented by a wide variety of people such as boy scouts, girl scouts, school groups, faith-based groups, social groups, watershed groups, and other community groups.

Additionally, development projects that are in need of providing off-site compensation for stormwater impacts can use the projects in this plan as a starting point. The municipality can quickly convert this impervious cover reduction action plan into a stormwater mitigation plan and incorporate it into the municipal stormwater control ordinance.


a. Overview Map of the Project

Summit Springfield Berkeley Heights *N*ounta<u>inside</u> Watchung Fanwood North Plainfield Scotch Plains Warren Green Brook Plainfield Bridgewater Dunellen Middlesex Raritan Readington Bound South Plainfield Borough Brook Franklin Somerville Woodbridge Manville South Branchburg Metuchen Piscataway Perth Brook Ambo Edison, Flemington Highland Hillsborough Franklin Parl South Township New Amboy Raritan Brunswick Township Sayreville Milltown) Delaware North River Brunswick **East Amwell** East Brunswick **Old Bridge** Spotswood South Brunswick Helmetta Jamesburg Marlboro Monroe Englishtown Freehold Manalapan / Borough Millstone Township Freehold Township 10 0 5 Miles

SPRINGFIELD: CLIMATE RESILIENT GREEN INFRASTRUCTURE FOR THE RARITAN BASIN

b. Green Infrastructure Sites

SPRINGFIELD: GREEN INFRASTRUCTURE SITES

SITES WITHIN THE BALTUSROL TRIBUTARY SUBWATERSHED:

- 1. Calvary Assembly of God
- 2. James Caldwell Elementary School
- 3. Jonathan Dayton High School
- 4. Springfield Community Pool
- 5. Springfield Department of Public Works
- 6. Springfield Fire Department
- 7. Springfield Municipal Court
- 8. Springfield Presbyterian Church
- 9. Temple Beth Ahm Yisrael

SITES WITHIN THE RAHWAY RIVER SUBWATERSHED:

- 10. Congregation Israel
- 11. Edward V. Walton School
- 12. Holy Cross Lutheran Church
- 13. Raymond Chisholm Community Center
- 14. Saint James the Apostle Parish Community
- 15. Sarah Baily Senior and Civic Center
- 16. Springfield Emanuel United Methodist Church
- 17. Temple Sha'arey Shalom
- 18. Thelma L. Sandmeier School

c. Proposed Green Infrastructure Concepts

CALVARY ASSEMBLY OF GOD

Subwatershed:	Baltusrol Tributary
Site Area:	138,917 sq. ft.
Address:	242 Shunpike Road Springfield, NJ 07081
Block and Lot:	Block 1105, Lot 25

Rain gardens can be installed to capture, treat, and infiltrate roof runoff. Pervious pavement can replace existing parking spaces to allow parking lot runoff to infiltrate. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervio	Impervious Cover		Existing Loads from Impervious Cover (lbs/yr)		Runoff Volume from In	npervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
64	88,845	4.3	44.9	407.9	0.069	2.44

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.136	23	10,337	0.39	2,205	\$11,025
Pervious pavements	0.792	133	4,353	0.16	9,336	\$233,400

Calvary Assembly of God

- disconnected downspouts
 - bioretention / rain gardens
- pervious pavements
- drainage areas
- **[]** property line
 - 2012 Aerial: NJOIT, OGIS

JAMES CALDWELL ELEMENTARY SCHOOL

Subwatershed:	Baltusrol Tributary
Site Area:	113,228 sq. ft.
Address:	36 Caldwell Place Springfield, NJ 07081
Block and Lot:	Block 705, Lot 7

Parking spaces and the play court can be converted into pervious pavement to infiltrate stormwater. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervi	Impervious Cover		Existing Loads from Impervious Cover (lbs/yr)		Runoff Volume from In	npervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
60	68,419	3.3	34.6	314.1	0.053	1.88

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavements	0.861	144	65,263	2.45	26,679	\$666,975

James Caldwell Elementary School

pervious pavements
drainage areas
property line
2012 Aerial: NJOIT, OGIS

JONATHAN DAYTON HIGH SCHOOL

Subwatershed:	Baltusrol Tributary
Site Area:	460,030 sq. ft.
Address:	139 Mountain Avenue Springfield, NJ 07081
Block and Lot:	Block 802, Lot 2

Two rain gardens have already been built at the front entrance of the school. Additional rain gardens can be installed on the northwest side of the main building and adjacent to the shed by the fields. Parking spaces can be replaced with pervious pavement to infiltrate stormwater. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Imper	Impervious Cover		Existing Loads from Impervious Cover (lbs/yr)		Runoff Volume from In	npervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
65	301,209	14.5	152.1	1,383.0	0.235	8.26

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.079	13	6,021	0.23	810	\$4,050
Pervious pavement	0.678	114	51,365	1.93	12,055	\$301,375

Jonathan Dayton High School

- disconnected downspouts
- pervious pavements
 - bioretention / rain gardens
- **[]** drainage areas
- **[]** property line
 - 2012 Aerial: NJOIT, OGIS

100'

SPRINGFIELD COMMUNITY POOL

Subwatershed:	Baltusrol Tributary
Site Area:	667,714 sq. ft.
Address:	44 Morrison Road Springfield, NJ 07081
Block and Lot:	Block 202, Lot 23

Parking spaces can be replaced with pervious pavement to capture and infiltrate stormwater. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Imperv	ious Cover	Existing Loads from Impervious Cover (lbs/yr)			Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
29	190,945	9.2	96.4	876.7	0.149	5.24	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavements	2.299	385	174,202	6.54	26,350	\$658,750

Springfield Community Pool

- pervious pavements
- **C** drainage areas
- [] property line
 - 2012 Aerial: NJOIT, OGIS

SPRINGFIELD DEPARTMENT OF PUBLIC WORKS

Subwatershed:	Baltusrol Tributary
Site Area:	66,374 sq. ft.
Address:	22 Mountain Avenue Springfield, NJ 07081
Block and Lot:	Block 707, Lot 10

There is an existing rain garden with curb cuts in an area near the stream. Parking spaces can be replaced with pervious pavement to infiltrate additional stormwater. Rainwater can also be harvested in a cistern and used to wash department vehicles. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

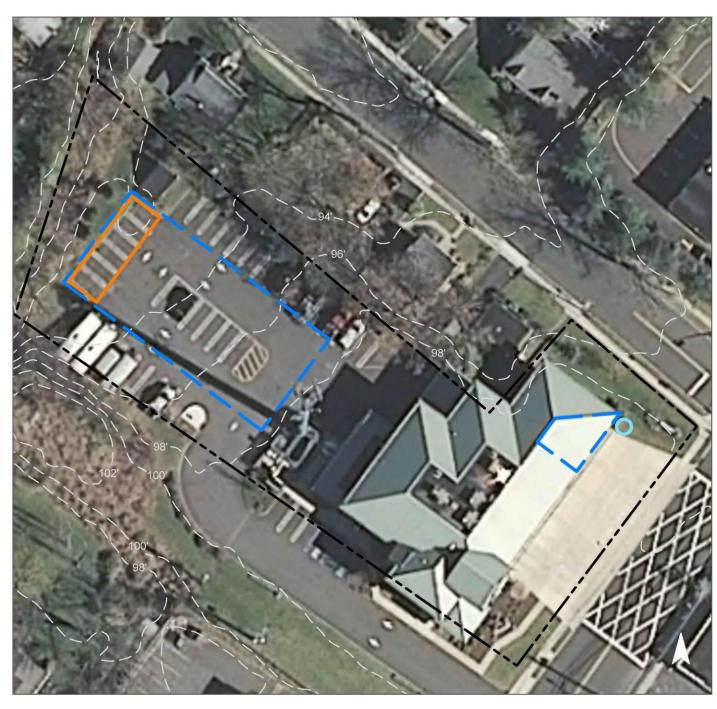
Impervio	ous Cover	Existing Loads from Impervious Cover (lbs/yr)			Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
79	52,258	2.5	26.4	239.9	0.041	1.43	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavements	0.737	123	55,838	2.10	9,440	\$236,000
Rainwater harvesting systems	0.036	6	1,290	0.10	1,290 (gal)	\$2,581

Springfield Department of Public Works

- pervious pavements
- rainwater harvesting
- drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS

SPRINGFIELD FIRE DEPARTMENT


Subwatershed:	Baltusrol Tributary
Site Area:	42,119 sq. ft.
Address:	200 Mountain Avenue Springfield, NJ 07081
Block and Lot:	Block 1202, Lot 35

A cistern can be installed to harvest rainwater that can be used to wash emergency vehicles. Parking spaces can also be converted into pervious pavement to infiltrate stormwater. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

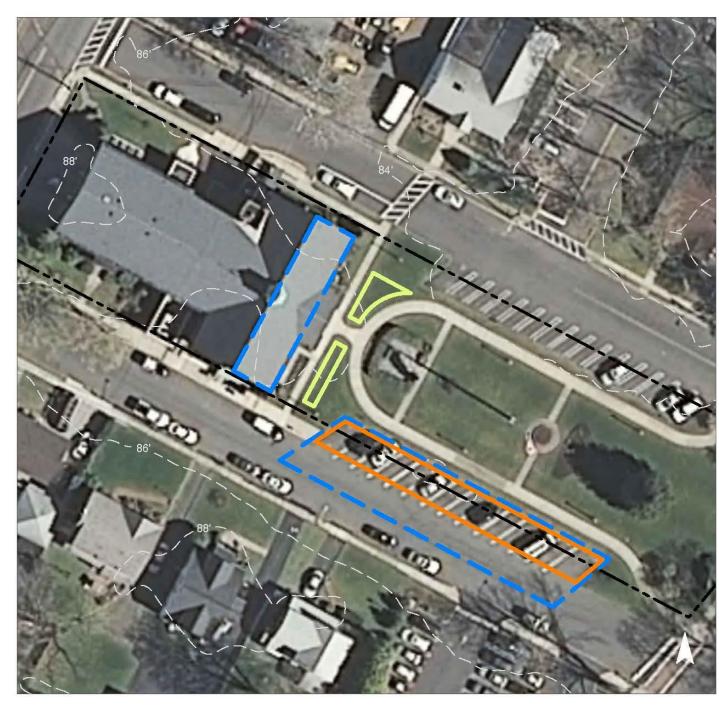
Impervio	ous Cover	Existing Loads from Impervious Cover (lbs/yr)			Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
70	29,301	1.4	14.8	134.5	0.023	0.80	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavements	0.198	33	15,992	0.60	992	\$24,800
Rainwater harvesting systems	0.018	3	637	0.09	637 (gal)	\$1,273

Springfield Fire Department

- pervious pavements
 - rainwater harvesting
- drainage areas
- [] property line
 - 2012 Aerial: NJOIT, OGIS

SPRINGFIELD MUNICIPAL COURT


Subwatershed:	Baltusrol Tributary
Site Area:	42,000 sq. ft.
Address:	100 Mountain Avenue Springfield, NJ 07081
Block and Lot:	Block 711, Lot 1

Rain gardens can be installed to capture, treat, and infiltrate roof runoff. Parking spaces can also be replaced with pervious pavement to infiltrate additional runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervio	ous Cover	Existing Loads from Impervious Cover (lbs/yr)			Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
65	27,300	1.3	13.8	125.3	0.021	0.75	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.052	9	3,972	0.15	478	\$2,390
Pervious pavements	0.149	25	11,295	0.42	2,581	\$64,525

Springfield Municipal Court

- bioretention / rain gardens
- pervious pavements
- drainage areas
- **[]** property line
 - 2012 Aerial: NJOIT, OGIS

SPRINGFIELD PRESBYTERIAN CHURCH

Subwatershed:	Baltusrol Tributary
Site Area:	39,016 sq. ft.
Address:	37 Church Mall Springfield, NJ 07081
Block and Lot:	Block 206, Lot 23

Parking spaces can be replaced with pervious pavement to infiltrate parking lot runoff. A rain garden can be built to capture, treat, and infiltrate roof runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervious Cover			sting Loads f vious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
63	24,512	1.2	12.4	112.5	0.019	0.67	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.011	2	838	0.03	190	\$950
Pervious pavements	0.228	38	17,249	0.65	2,684	\$67,100

Springfield Presbyterian Church

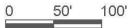
- disconnected downspouts
 - bioretention / rain gardens
- pervious pavements
- drainage areas
- [] property line
 - 2012 Aerial: NJOIT, OGIS

TEMPLE BETH AHM YISRAEL


Subwatershed:	Baltusrol Tributary
Site Area:	193,703 sq. ft.
Address:	60 Temple Drive Springfield, NJ 07081
Block and Lot:	Block 506, Lot 1

Parking spaces can be replaced with pervious pavement to capture and infiltrate runoff. Bioretention systems can be installed to capture, treat, and infiltrate rooftop runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervious Cover			ting Loads f vious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
61	117,917	5.7	59.6	541.4	0.092	3.23	


Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.121	20	9,141	0.34	1,160	\$5,800
Pervious pavements	0.264	44	19,972	0.75	3,816	\$95,400

Temple Beth Ahm Yisrael

- disconnected downspouts
- pervious pavements
 - bioretention / rain gardens
- **C** drainage areas
- **[]** property line
 - 2012 Aerial: NJOIT, OGIS

CONGREGATION ISRAEL

Subwatershed:	Rahway River
Site Area:	50,549 sq. ft.
Address:	339 Mountain Avenue Springfield, NJ 07081
Block and Lot:	Block 1801, Lot 36

Parking spaces can be converted into pervious pavement to infiltrate runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

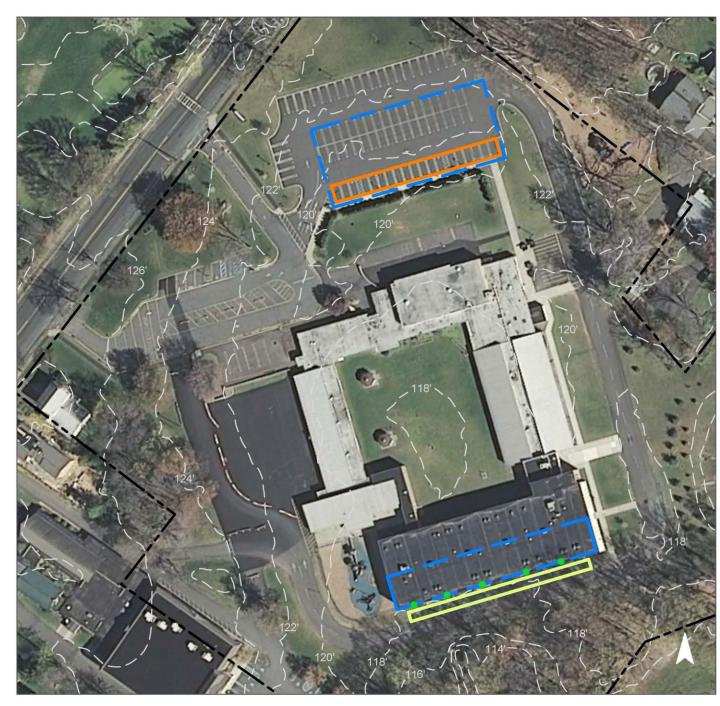
Impervio	ous Cover	Existing Loads from Impervious Cover (lbs/yr)			Runoff Volume from In	npervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
75	37,911	1.8	19.1	174.1	0.030	1.04

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavements	0.163	27	12,320	0.46	2,415	\$60,375

Congregation Israel

	pervious pavements
3	drainage areas
:3	property line
	2012 Aerial: NJOIT, OGIS

EDWARD V. WALTON SCHOOL


Subwatershed:	Rahway River
Site Area:	557,293 sq. ft.
Address:	601 Mountain Avenue Springfield, NJ 07081
Block and Lot:	Block 2901, Lot 78



Parking spaces can be replaced using pervious pavement to allow stormwater to infiltrate. A rain garden can also be installed to capture, treat, and infiltrate roof runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervio	ous Cover		sting Loads f vious Cover		Runoff Volume from In	npervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
41	229,951	11.1	116.1	1,055.8	0.179	6.31

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.202	34	15,274	0.57	1,921	\$9,605
Pervious pavement	0.407	68	30,803	1.16	3,205	\$80,125

Edward V. Walton School

- disconnected downspouts
- pervious pavements
 - bioretention / rain gardens
- drainage areas
- [] property line
 - 2012 Aerial: NJOIT, OGIS

HOLY CROSS LUTHERAN CHURCH

Subwatershed:	Rahway River
Site Area:	71,810 sq. ft.
Address:	639 Mountain Avenue Springfield, NJ 07081
Block and Lot:	Block 2901, Lot 75

Parking spaces can be replaced with pervious pavement to capture and infiltrate parking lot runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervio	ous Cover	Existing Loads from Impervious Cover (lbs/yr)		over Runoff Volume from		npervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
74	52,894	2.5	26.7	242.9	0.041	1.45

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavements	0.566	95	42,898	1.61	6,205	\$155,125

Holy Cross Lutheran Church

- pervious pavements
- drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS

RAYMOND CHISHOLM COMMUNITY CENTER

Subwatershed:	Rahway River
Site Area:	176,278 sq. ft.
Address:	100 S. Springfield Avenue Springfield, NJ 07081
Block and Lot:	Block 1804, Lot 6

Parking spaces can be replaced with pervious pavement to infiltrate parking lot runoff. Rainwater can also be harvested in a cistern to be used to conduct car wash fund raisers or to water the existing landscape. A bioretention system can be installed to capture, treat, and infiltrate rooftop runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervio	Impervious Cover		sting Loads f vious Cover		Runoff Volume from In	npervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
39	68,148	3.3	34.4	312.9	0.053	1.87

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.016	3	1,174	0.04	180	\$900
Pervious pavements	0.249	42	18,894	0.71	3,742	\$93,550
Rainwater harvesting systems	0.013	2	474	0.04	474 (gal)	\$948

Raymond Chisholm Community Center

- disconnected downspouts
- rainwater harvesting
- pervious pavements
 - bioretention / rain gardens
- drainage areas
- [] property line
 - 2012 Aerial: NJOIT, OGIS

60'

SAINT JAMES THE APOSTLE PARISH COMMUNITY

Subwatershed:	Rahway River
Site Area:	211,850 sq. ft.
Address:	41 S Springfield Avenue Springfield, NJ 07081
Block and Lot:	Block 1402, Lot 6

Rain gardens can be installed to capture, treat, and infiltrate roof runoff. Parking spaces can also be converted into pervious pavement to infiltrate additional stormwater. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

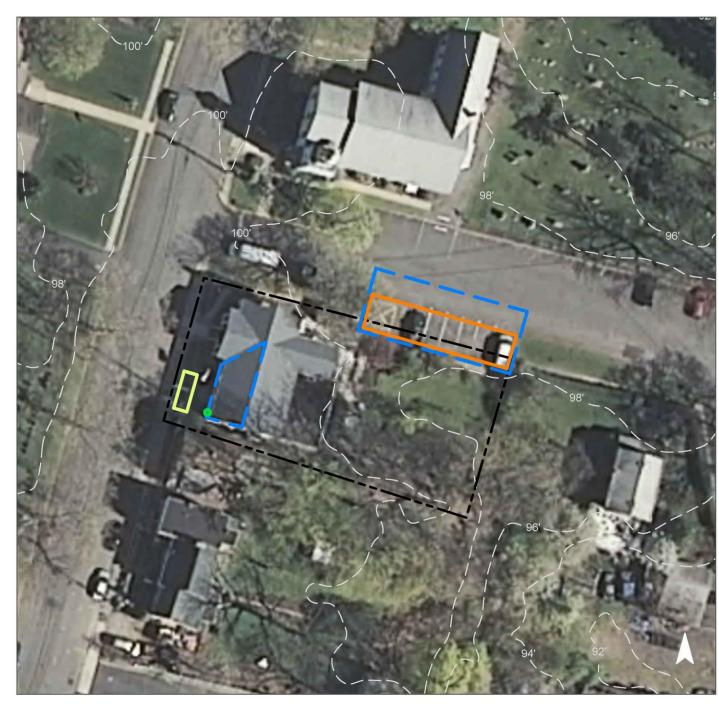
Impervi	ous Cover	Existing Loads from Impervious Cover (lbs/yr)			Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
62	130,939	6.3	66.1	601.2	0.102	3.59	

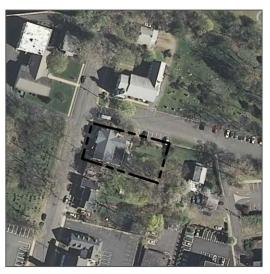
Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.073	12	5,513	0.21	850	\$4,250
Pervious pavements	0.425	71	32,209	1.21	5,330	\$133,250

Saint James The Apostle Parish Community

- disconnected downspouts
- pervious pavements
 - bioretention / rain gardens
- drainage areas
- [] property line
 - 2012 Aerial: NJOIT, OGIS

SARAH BAILY SENIOR AND CIVIC CENTER


Subwatershed:	Rahway River
Site Area:	13,504 sq. ft.
Address:	30 Church Mall Springfield, NJ 07081
Block and Lot:	Block 208, Lot 7



A rain garden can capture, treat, and infiltrate roof runoff. Parking spaces can also be converted into pervious pavement to infiltrate parking lot runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervi	ous Cover	Existing Loads from Impervious Cover (lbs/yr)			Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
32	4,301	0.2	2.2	19.7	0.003	0.12	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.019	3	1,414	0.05	140	\$700
Pervious pavements	0.071	12	5,408	0.20	1,400	\$35,000

Sarah Bailey Senior and Civic Center

- disconnected downspouts
 - bioretention / rain gardens
- pervious pavements
- drainage areas
- [] property line
 - 2012 Aerial: NJOIT, OGIS

SPRINGFIELD EMANUEL UNITED METHODIST CHURCH

Subwatershed:	Rahway River
Site Area:	71,790 sq. ft.
Address:	40 Church Mall Springfield, NJ 07081
Block and Lot:	Block 209, Lot 1

Rain gardens can be installed to capture, treat, and infiltrate roof runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	ous Cover	Existing Loads from Impervious Cover (lbs/yr)			Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
31	21,940	1.1	11.1	100.7	0.017	0.60	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.027	5	2,042	0.08	290	\$1,450

Springfield Emanuel United Methodist Church

- disconnected downspouts
 - bioretention / rain gardens
- drainage areas
- **[]** property line
- 2012 Aerial: NJOIT, OGIS

TEMPLE SHA'AREY SHALOM

Subwatershed:	Rahway River
Site Area:	65,516 sq. ft.
Address:	78 S. Springfield Avenue Springfield, NJ 07081
Block and Lot:	Block 1403, Lot 18

Parking spaces can be replaced with pervious pavement to capture and infiltrate stormwater. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	ous Cover	er Existing Loads from Impervious Cover (lbs/yr)			Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
78	50,916	2.5	25.7	233.8	0.040	1.40	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavements	0.372	62	28,147	1.06	9,123	\$228,075

Temple Sha'arey Shalom

- pervious pavements
- C drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS

THELMA L. SANDMEIER SCHOOL

Subwatershed:	Rahway River
Site Area:	591,998 sq. ft.
Address:	666 S. Springfield Avenue Springfield, NJ 07081
Block and Lot:	Block 2901, Lot 1

Rain gardens can be built to capture, treat, and infiltrate roof runoff. Parking spaces and the play court can be converted into pervious pavement to infiltrate additional stormwater runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervio	Impervious CoverExisting Loads from Impervious Cover (lbs/yr)				Runoff Volume from Impervious Cover (Mgal)				
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''			
24	144,846	7.0	73.2	665.0	0.113	3.97			

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.093	16	7,069	0.27	900	\$4,500
Pervious pavement	0.607	102	45,987	1.73	14,187	\$354,675

Thelma L. Sandmeier School

- disconnected downspouts
 - bioretention / rain gardens
- pervious pavements
- drainage areas
- [] property line
 - 2012 Aerial: NJOIT, OGIS

d. Summary of Existing Conditions

Summary of Existing Site Conditions

											Runoff Volumes fr	rom I.C.
Subwatershed/Site Name/Total Site Info/GI Practice	Area	Area	Block	Lot	TP	sting Annual TN	TSS	I.C.	I.C. Area	I.C. Area	Water Quality Storm (1.25" over 2-hours)	Annual
Subwatershed/Site Ivanie/Total Site Into/OFFTactice	(ac)	(SF)	DIOCK	LOI	(lb/yr)	(lb/yr)	(lb/yr)	1.C. %	(ac)	(SF)	(1.25 over 2-hours) (Mgal)	(Mgal)
BALTUSROL TRIBUTARY SUBWATERSHED	40.48	1,763,101			43.4	454.9	4,135.5		20.68	900,706	0.702	24.70
Calvary Assembly of God Total Site Info	3.19	138,917	1105	25	4.3	44.9	407.9	64.0	2.04	88,845	0.069	2.44
James Caldwell Elementary School Total Site Info	2.60	113,228	705	7	3.3	34.6	314.1	60.4	1.57	68,419	0.053	1.88
Jonathan Dayton High School Total Site Info	10.56	460,030	802	2	14.5	152.1	1,383.0	65.5	6.91	301,209	0.235	8.26
Springfield Community Pool Total Site Info	15.33	667,714	202	23	9.2	96.4	876.7	28.6	4.38	190,945	0.149	5.24
Springfield Department of Public Works Total Site Info	1.52	66,374	707	10	2.5	26.4	239.9	78.7	1.20	52,258	0.041	1.43
Springfield Fire Department Total Site Info	0.97	42,119	1202	35	1.4	14.8	134.5	69.6	0.67	29,301	0.023	0.80
Springfield Municipal Court Total Site Info	0.96	42,000	711	1	1.3	13.8	125.3	65.0	0.63	27,300	0.021	0.75
Springfield Presbyterian Church Total Site Info	0.90	39,016	206	23	1.2	12.4	112.5	62.8	0.56	24,512	0.019	0.67
Temple Beth Ahm Yisrael Total Site Info	4.45	193,703	506	1	5.7	59.6	541.4	60.9	2.71	117,917	0.092	3.23
RAHWAY RIVER SUBWATERSHED	41.57	1,810,588			35.8	374.7	3,406.1		17.03	741,846	0.578	20.35
Congregation Israel Total Site Info	1.16	50,549	1801	36	1.8	19.1	174.1	75.0	0.87	37,911	0.030	1.04
Edward V. Walton School Total Site Info	12.79	557,293	2901	78	11.1	116.1	1,055.8	41.3	5.28	229,951	0.179	6.31

Summary of Existing Site Conditions

											Runoff Volumes fr	rom I.C.
						sting Annual			I.C.	I.C.	Water Quality Storm	į
Subwatershed/Site Name/Total Site Info/GI Practice		Area	Block	Lot	TP	TN	TSS	I.C.	Area	Area	(1.25" over 2-hours)	Annual
	(ac)	(SF)			(lb/yr)	(lb/yr)	(lb/yr)	%	(ac)	(SF)	(Mgal)	(Mgal)
Holy Cross Lutheran Church												
Total Site Info	1.65	71,810	2901	75	2.5	26.7	242.9	73.7	1.21	52,894	0.041	1.45
Raymond Chisholm Community Center												
Total Site Info	4.05	176,278	1804	6	3.3	34.4	312.9	38.7	1.56	68,148	0.053	1.87
Saint James the Apostle Parish Community												
Total Site Info	4.86	211,850	1402	6	6.3	66.1	601.2	61.8	3.01	130,939	0.102	3.59
Sarah Baily Senior & Civic Center												
Total Site Info	0.31	13,504	208	7	0.2	2.2	19.7	31.8	0.10	4,301	0.003	0.12
Springfield Emanuel United Methodist Church												
Total Site Info	1.65	71,790	209	1	1.1	11.1	100.7	30.6	0.50	21,940	0.017	0.60
Temple Sha'arey Shalom												
Total Site Info	1.50	65,516	506	1	2.5	25.7	233.8	77.7	1.17	50,916	0.040	1.40
Thelma L. Sandmeier School												
Total Site Info	13.59	591,998	2901	1	7.0	73.2	665.0	24.5	3.33	144,846	0.113	3.97

e. Summary of Proposed Green Infrastructure Practices

Summary of Proposed Green Infrastructure Practices

	Potential Man	agement Area			Max Volume	Peak Discharge		
			Recharge	TSS Removal	Reduction	Reduction	Size of	Ur
Subwatershed/Site Name/Total Site Info/GI Practice	Area	Area	Potential	Potential	Potential	Potential	BMP	Co
	(SF)	(ac)	(Mgal/yr)	(lbs/yr)	(gal/storm)	(cfs)	(SF)	(\$
BALTUSROL TRIBUTARY SUBWATERSHED	255,599	5.87	6.660	1,115	447,765	16.93	100,703	
Calvary Assembly of God								
Bioretention systems/rain gardens	5,235	0.12	0.136	23	10,337	0.39	2,205	5
Pervious pavements	30,380	0.70	0.792	133	4,353	0.16	9,336	2:
Total Site Info	35,615	0.82	0.928	155	14,690	0.55	11,541	
James Caldwell Elementary School								
Pervious pavements	33,062	0.76	0.861	144	65,263	2.45	26,679	2:
Total Site Info	33,062	0.76	0.861	144	65,263	2.45	26,679	
Jonathan Dayton High School								
Bioretention systems/rain gardens	3,050	0.07	0.079	13	6,021	0.23	810	5
Pervious pavements	26,023	0.60	0.678	114	51,365	1.93	12,055	2:
Total Site Info	29,073	0.67	0.758	127	57,386	2.16	12,865	
Springfield Community Pool								
Pervious pavements	88,250	2.03	2.299	385	174,202	6.54	26,350	2:
Total Site Info	88,250	2.03	2.299	385	174,202	6.54	26,350	
Springfield Department of Public Works								
Pervious pavements	28,286	0.65	0.737	123	55,838	2.10	9,440	2:
Rainwater harvesting systems	1,380	0.03	0.036	6	1,290	0.10	1,290	2
Total Site Info	29,666	0.68	0.773	129	57,128	2.20	10,730	
Springfield Fire Department								
Pervious pavements	7,606	0.17	0.198	33	15,992	0.60	992	2:
Rainwater harvesting systems	681	0.02	0.018	3	637	0.09	637	2
Total Site Info	8,287	0.19	0.216	36	16,629	0.69	1,629	
Springfield Municipal Court								
Bioretention systems/rain gardens	2,011	0.05	0.052	9	3,972	0.15	478	5
Pervious pavements	5,723	0.13	0.149	25	11,295	0.42	2,581	2:
Total Site Info	7,734	0.18	0.202	34	15,267	0.57	3,059	

Unit Cost (\$)	Unit	Total Cost (\$)	I.C. Treated %
		\$2,376,394	28.4%
5 25	SF SF	\$11,025 \$233,400 \$244,425	5.9% 34.2% 40.1%
25	SF	\$666,975 \$666,975	48.3% 48.3%
5 25	SF SF	\$4,050 \$301,375 \$305,425	1.0% 8.6% 9.7%
25	SF	\$658,750 \$658,750	46.2% 46.2%
25 2	SF gal	\$236,000 \$2,581 \$238,581	54.1% 2.6% 56.8%
25 2	SF gal	\$24,800 \$1,273 \$26,073	26.0% 2.3% 28.3%
5 25	SF SF	\$2,390 \$64,525 \$66,915	7.4% 21.0% 28.3%

Summary of Proposed Green Infrastructure Practices

	Potential Mar	nagement Area			Max Volume	Peak Discharge		
			Recharge	TSS Removal	Reduction	Reduction	Size of	Uı
Subwatershed/Site Name/Total Site Info/GI Practice	e Area	Area	Potential	Potential	Potential	Potential	BMP	Co
	(SF)	(ac)	(Mgal/yr)	(lbs/yr)	(gal/storm)	(cfs)	(SF)	(\$
Springfield Presbyterian Church								
Bioretention systems/rain gardens	426	0.01	0.011	2	838	0.03	190	4
Pervious pavements	8,738	0.20	0.228	38	17,249	0.65	2,684	2
Total Site Info	9,164	0.21	0.239	40	18,087	0.68	2,874	
Temple Beth Ahm Yisrael								
Bioretention systems/rain gardens	4,630	0.11	0.121	20	9,141	0.34	1,160	4
Pervious pavements	10,118	0.23	0.264	44	19,972	0.75	3,816	2
Total Site Info	14,748	0.34	0.384	64	29,113	1.09	4,976	
RAHWAY RIVER SUBWATERSHED	126,723	2.91	3.302	553	249,626	9.40	50,362	
Congregation Israel								
Pervious pavements	6,241	0.14	0.163	27	12,320	0.46	2,415	2
Total Site Info	6,241	0.14	0.163	27	12,320	0.46	2,415	
Edward V. Walton School								
Bioretention systems/rain gardens	7,737	0.18	0.202	34	15,274	0.57	1,921	4
Pervious pavements	15,606	0.36	0.407	68	30,803	1.16	3,205	2
Total Site Info	23,343	0.54	0.608	102	46,077	1.73	5,126	
Holy Cross Lutheran Church								
Pervious pavements	21,733	0.50	0.566	95	42,898	1.61	6,205	2
Total Site Info	21,733	0.50	0.566	95	42,898	1.61	6,205	
Raymond Chisholm Community Center								
Bioretention systems/rain gardens	595	0.01	0.016	3	1,174	0.04	180	4
Pervious pavements	9,570	0.22	0.249	42	18,894	0.71	3,742	2
Rainwater harvesting systems	507	0.01	0.013	2	474	0.04	474	4
Total Site Info	10,672	0.24	0.278	47	20,542	0.79	4,396	
Saint James the Apostle Parish Community								
Bioretention systems/rain gardens	2,792	0.06	0.073	12	5,513	0.21	850	4
Pervious pavements	16,315	0.37	0.425	71	32,209	1.21	5,330	2
Total Site Info	19,107	0.44	0.498	83	37,722	1.42	6,180	

Unit Cost (\$)	Unit	Total Cost (\$)	I.C. Treated %
5 25	SF SF	\$950 \$67,100 \$68,050	1.7% 35.6% 37.4%
5 25	SF SF	\$5,800 \$95,400 \$101,200	3.9% 8.6% 12.5%
		\$1,162,528	17.1%
25	SF	\$60,375 \$60,375	16.5% 16.5%
5 25	SF SF	\$9,605 \$80,125 \$89,730	3.4% 6.8% 10.2%
25	SF	\$155,125 \$155,125	41.1% 41.1%
5 25 2	SF SF gal	\$900 \$93,550 \$948 \$95,398	0.9% 14.0% 0.7% 15.7%
5 25	SF SF	\$4,250 \$133,250 \$137,500	2.1% 12.5% 14.6%

Summary of Proposed Green Infrastructure Practices

		Potential Man	nagement Area			Max Volume	Peak Discharge		
				Recharge	TSS Removal	Reduction	Reduction	Size of	Uı
	Subwatershed/Site Name/Total Site Info/GI Practice	Area	Area	Potential	Potential	Potential	Potential	BMP	Co
		(SF)	(ac)	(Mgal/yr)	(lbs/yr)	(gal/storm)	(cfs)	(SF)	(5
15	Sarah Baily Senior & Civic Center								
	Bioretention systems/rain gardens	718	0.02	0.019	3	1,414	0.05	140	4
	Pervious pavements	2,740	0.06	0.071	12	5,408	0.20	1,400	2
	Total Site Info	3,458	0.08	0.090	15	6,822	0.25	1,540	
16	Springfield Emanuel United Methodist Church								
	Bioretention systems/rain gardens	1,034	0.02	0.027	5	2,042	0.08	290	4
	Total Site Info	1,034	0.02	0.027	5	2,042	0.08	290	
17	Temple Sha'arey Shalom								
	Pervious pavements	14,260	0.33	0.372	62	28,147	1.06	9,123	2
	Total Site Info	14,260	0.33	0.372	62	28,147	1.06	9,123	
18	Thelma L. Sandmeier School								
	Bioretention systems/rain gardens	3,580	0.08	0.093	16	7,069	0.27	900	4
	Pervious pavements	23,295	0.53	0.607	102	45,987	1.73	14,187	2
	Total Site Info	26,875	0.62	0.700	117	53,056	2.00	15,087	

Unit Cost (\$)	Unit	Total Cost (\$)	I.C. Treated %
5 25	SF SF	\$700 \$35,000 \$35,700	16.7% 63.7% 80.4%
5	SF	\$1,450 \$1,450	4.7% 4.7%
25	SF	\$228,075 \$228,075	28.0% 28.0%
5 25	SF SF	\$4,500 \$354,675 \$359,175	2.5% 16.1% 18.6%