



#### Draft

#### Impervious Cover Reduction Action Plan for Tinton Falls Borough, Monmouth County, New Jersey

Prepared for Tinton Falls Borough by the Rutgers Cooperative Extension Water Resources Program

June 14, 2016





#### **Table of Contents**

| Introduction                   |   |
|--------------------------------|---|
| Methodology                    | 1 |
| Green Infrastructure Practices |   |
| Potential Project Sites        |   |
| Conclusion                     |   |

Attachment: Climate Resilient Green Infrastructure

- a. Green Infrastructure Sites
- b. Proposed Green Infrastructure Concepts
- c. Summary of Existing Conditions
- d. Summary of Proposed Green Infrastructure Practices

#### **Introduction**

Located in Monmouth County in central New Jersey, Tinton Falls Borough covers approximately 15.6 square miles. Figures 1 and 2 illustrate that Tinton Falls Borough is dominated by urban land use. A total of 46.4% of the municipality's land use is classified as urban. Of the urban land use in Tinton Falls Borough, low density residential is the dominant land use (Figure 3).

The New Jersey Department of Environmental Protection (NJDEP) 2007 land use/land cover geographical information system (GIS) data layer categorizes Tinton Falls Borough into many unique land use areas, assigning a percent impervious cover for each delineated area. These impervious cover values were used to estimate the impervious coverage for Tinton Falls Borough. Based upon the NJDEP 2007 land use/land cover data, approximately 16.8% of Tinton Falls Borough has impervious cover. This level of impervious cover suggests that the streams in Tinton Falls Borough are likely impacted streams.<sup>1</sup>

#### **Methodology**

Tinton Falls Borough contains portions of seven subwatersheds (Figure 4). For this impervious cover reduction action plan, projects have been identified in each of these watersheds. Initially, aerial imagery was used to identify potential project sites that contain extensive impervious cover. Field visits were then conducted at each of these potential project sites to determine if a viable option exists to reduce impervious cover or to disconnect impervious surfaces from draining directly to the local waterway or storm sewer system. During the site visit, appropriate green infrastructure practices for the site were determined. Sites that already had stormwater management practices in place were not considered.

<sup>&</sup>lt;sup>1</sup> Caraco, D., R. Claytor, P. Hinkle, H. Kwon, T. Schueler, C. Swann, S. Vysotsky, and J. Zielinski. 1998. Rapid Watershed Planning Handbook. A Comprehensive Guide for Managing Urbanizing Watersheds. Prepared by Center For Watershed Protection, Ellicott City, MD. Prepared for U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds and Region V. October 1998



Figure 1: Map illustrating the land use in Tinton Falls Borough



Figure 2: Pie chart illustrating the land use in Tinton Falls Borough



Figure 3: Pie chart illustrating the various types of urban land use in Tinton Falls Borough



Figure 4: Map of the subwatersheds in Tinton Falls Borough

For each potential project site, specific aerial loading coefficients for commercial land use were used to determine the annual runoff loads for total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) from impervious surfaces (Table 1). These are the same aerial loading coefficients that NJDEP uses in developing total maximum daily loads (TMDLs) for impaired waterways of the state. The percentage of impervious cover for each site was extracted from the 2007 NJDEP land use/land cover database. For impervious areas, runoff volumes were determined for the water quality design storm (1.25 inches of rain over two-hours) and for the annual rainfall total of 44 inches.

Preliminary soil assessments were conducted for each potential project site identified in Tinton Falls Borough using the United States Department of Agriculture Natural Resources Conservation Service Web Soil Survey, which utilizes regional and statewide soil data to predict soil types in an area. Several key soil parameters were examined (e.g., natural drainage class, saturated hydraulic conductivity of the most limiting soil layer (K<sub>sat</sub>), depth to water table, and hydrologic soil group) to evaluate the suitability of each site's soil for green infrastructure practices. In cases where multiple soil types were encountered, the key soil parameters were examined for each soil type expected at a site.

For each potential project site, drainage areas were determined for each of the green infrastructure practices proposed at the site. These green infrastructure practices were designed to manage the 2-year design storm, enabling these practices to capture 95% of the annual rainfall. Runoff volumes were calculated for each proposed green infrastructure practice. The reduction in TSS loading was calculated for each drainage area for each proposed green infrastructure practice using the aerial loading coefficients in Table 1. The maximum volume reduction in stormwater runoff for each green infrastructure practice for a storm was determined by calculating the volume of runoff captured from the 2-year design storm. For each green infrastructure practice, peak discharge reduction potential was determined through hydrologic modeling in HydroCAD. For each green infrastructure practice, a cost estimate is provided. These costs are based upon the square footage of the green infrastructure practice and the real cost of green infrastructure practice implementation in New Jersey.

| Land Cover                       | TP load<br>(lbs/acre/yr) | TN load<br>(lbs/acre/yr) | TSS load<br>(lbs/acre/yr) |
|----------------------------------|--------------------------|--------------------------|---------------------------|
| High, Medium Density Residential | 1.4                      | 15                       | 140                       |
| Low Density, Rural Residential   | 0.6                      | 5                        | 100                       |
| Commercial                       | 2.1                      | 22                       | 200                       |
| Industrial                       | 1.5                      | 16                       | 200                       |
| Urban, Mixed Urban, Other Urban  | 1.0                      | 10                       | 120                       |
| Agriculture                      | 1.3                      | 10                       | 300                       |
| Forest, Water, Wetlands          | 0.1                      | 3                        | 40                        |
| Barrenland/Transitional Area     | 0.5                      | 5                        | 60                        |

Table 1: Aerial Loading Coefficients<sup>2</sup>

<sup>&</sup>lt;sup>2</sup> New Jersey Department of Environmental Protection (NJDEP), Stormwater Best Management Practice Manual, 2004.

#### **Green Infrastructure Practices**

Green infrastructure is an approach to stormwater management that is cost-effective, sustainable, and environmentally friendly. Green infrastructure projects capture, filter, absorb, and reuse stormwater to maintain or mimic natural systems and to treat runoff as a resource. As a general principal, green infrastructure practices use soil and vegetation to recycle stormwater runoff through infiltration and evapotranspiration. When used as components of a stormwater management system, green infrastructure practices such as bioretention, green roofs, porous pavement, rain gardens, and vegetated swales can produce a variety of environmental benefits. In addition to effectively retaining and infiltrating rainfall, these practices can simultaneously help filter air pollutants, reduce energy demands, mitigate urban heat islands, and sequester carbon while also providing communities with aesthetic and natural resource benefits<sup>3</sup>. A wide range of green infrastructure practices have been evaluated for the potential project sites Tinton Falls Borough. Each practice is discussed below.

#### Disconnected downspouts

This is often referred to as simple disconnection. A downspout is simply disconnected, prevented from draining directly to the roadway or storm sewer system, and directed to discharge water to a pervious area (i.e., lawn).



#### Pervious pavements

There are several types of permeable pavement systems including porous asphalt, pervious concrete, permeable pavers, and grass pavers. These surfaces are hard and support vehicle traffic but also allow water to infiltrate through the surface. They have an underlying stone layer to store stormwater runoff and allow it to slowly seep into the ground.



<sup>&</sup>lt;sup>3</sup> United States Environmental Protection Agency (USEPA), 2013. Watershed Assessment, Tracking, and Environmental Results, New Jersey Water Quality Assessment Report. <u>http://ofmpub.epa.gov/waters10/attains\_state.control?p\_state=NJ</u>

#### Bioretention systems/rain gardens

These are landscaped features that are designed to capture, treat, and infiltrate stormwater runoff. These systems can easily be incorporated into existing landscapes, improving aesthetics and creating a wildlife habitat while managing stormwater runoff. Bioretention systems also can be used in soils that do not quickly infiltrate by incorporating an underdrain into the system.



#### Downspout planter boxes

These are wooden boxes with plants installed at the base of a downspout that provide an opportunity to beneficially reuse rooftop runoff.



#### Rainwater harvesting systems (cistern or rain barrel)

These systems capture rainwater, mainly from rooftops, in cisterns or rain barrels. The water can then be used for watering gardens, washing vehicles, or for other non-potable uses.



#### Bioswale

Bioswales are landscape features that convey stormwater from one location to another while removing pollutants and providing water an opportunity to infiltrate.



#### Stormwater planters

Stormwater planters are vegetated structures that are built into the sidewalk to intercept stormwater runoff from the roadway or sidewalk. Many of these planters are designed to allow the water to infiltrate into the ground while others are designed simply to filter the water and convey it back into the stormwater sewer system.



#### Tree filter boxes

These are pre-manufactured concrete boxes that contain a special soil mix and are planted with a tree or shrub. They filter stormwater runoff but provide little storage capacity. They are typically designed to quickly filter stormwater and then discharge it to the local sewer system.



#### **Potential Project Sites**

Attachment 1 contains information on potential project sites where green infrastructure practices could be installed. The recommended green infrastructure practice and the drainage area that the green infrastructure practice can treat are identified for each potential project site. For each practice, the recharge potential, TSS removal potential, maximum volume reduction potential per storm, and the peak reduction potential are provided. This information is also provided so that proposed development projects that cannot satisfy the New Jersey stormwater management requirements for major development can use one of the identified projects to offset a stormwater management deficit.<sup>4</sup>

<sup>&</sup>lt;sup>4</sup> New Jersey Administrative Code, N.J.A.C. 7:8, Stormwater Management, Statutory Authority: N.J.S.A. 12:5-3, 13:1D-1 et seq., 13:9A-1 et seq., 13:19-1 et seq., 40:55D-93 to 99, 58:4-1 et seq., 58:10A-1 et seq., 58:11A-1 et seq. and 58:16A-50 et seq., *Date last amended: April 19, 2010.* 

#### **Conclusion**

This impervious cover reduction action plan is meant to provide the municipality with a blueprint for implementing green infrastructure practices that will reduce the impact of stormwater runoff from impervious surfaces. These projects can be implemented by a wide variety of people such as boy scouts, girl scouts, school groups, faith-based groups, social groups, watershed groups, and other community groups.

Additionally, development projects that are in need of providing off-site compensation for stormwater impacts can use the projects in this plan as a starting point. The municipality can quickly convert this impervious cover reduction action plan into a stormwater mitigation plan and incorporate it into the municipal stormwater control ordinance.

a. Green Infrastructure Sites

#### TINTON FALLS BOROUGH: GREEN INFRASTRUCTURE SITES



### SITES WITHIN THE JUMPING BROOK SUBWATERSHED:

- 1. Bongarzone Funeral Home
- 2. Glad Tidings Assembly of God
- 3. Wayside Fire Company

#### SITES WITHIN THE PARKERS CREEK/OCEANPORT CREEK SUBWATERSHED:

- 4. Monmouth Regional High School
- 5. Park Church
- 6. Winding Brook School

#### SITES WITHIN THE PAPINE BROOK/HOCKHOCKSON BROOK SUBWATERSHED:

- 7. Grace Christian Church
- 8. Luther Memorial Evangelical Church
- 9. Mahala F. Atchison School
- 10. Monmouth Church of Christ
- 11. Monmouth Reform Temple
- 12. Pine Brook Fire Co. Inc
- 13. Tinton Falls Middle School

#### SITES WITHIN THE PORICY BROOK/SWIMMING RIVER SUBWATERSHED:

- 14. Emmanuel Baptist Church
- 15. Northside Engine Company
- 16. Oakwood School

**b.** Proposed Green Infrastructure Concepts

### **BONGARZONE FUNERAL HOME**



| Subwatershed:  | Jumping Brook                              |
|----------------|--------------------------------------------|
| Site Area:     | 156,569 sq. ft.                            |
| Address:       | 2400 Shafto Road<br>Tinton Falls, NJ 07712 |
| Block and Lot: | Block 124, Lot 28                          |



Parking spots along the south end of the site can be replaced with pervious pavement to capture and infiltrate stormwater runoff from the parking lot. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

| Impervious Cover |         | Exis<br>Imperv | sting Loads f<br>vious Cover | rom<br>(lbs/yr) | Runoff Volume from Impervious Cover (Mgal) |                                |  |
|------------------|---------|----------------|------------------------------|-----------------|--------------------------------------------|--------------------------------|--|
| %                | sq. ft. | ТР             | TN                           | TSS             | For the 1.25" Water Quality Storm          | For an Annual Rainfall of 44'' |  |
| 49               | 76,536  | 3.7            | 38.7                         | 351.4           | 0.060                                      | 2.10                           |  |

| Recommended Green<br>Infrastructure Practices | Recharge<br>Potential<br>(Mgal/yr) | TSS Removal<br>Potential (lbs/yr) | Maximum Volume<br>Reduction Potential<br>(gal/storm) | Peak Discharge<br>Reduction Potential<br>(cu. ft./second) | Estimated<br>Size (sq. ft.) | Estimated<br>Cost |
|-----------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------|
| Pervious pavements                            | 0.250                              | 42                                | 6193                                                 | 0.64                                                      | 4,830                       | \$120,750         |





### Bongarzone Funeral Home

|    | pervious pavements       |
|----|--------------------------|
| 3  | drainage areas           |
| :3 | property line            |
|    | 2012 Aerial: NJOIT, OGIS |



### **GLAD TIDINGS ASSEMBLY OF GOD**



| Subwatershed:  | Jumping Brook                             |
|----------------|-------------------------------------------|
| Site Area:     | 262,811 sq. ft.                           |
| Address:       | 4012 Asbury Ave<br>Tinton Falls, NJ 07753 |
| Block and Lot: | Block 128.03, Lot 28.03                   |



Parking spaces east of the church can be replaced with pervious pavement to capture and infiltrate parking lot runoff. A rain garden can also be implemented near the front of the building by redirecting downspouts to capture rooftop runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

| Impervio | ous Cover | Exis<br>Imperv | ting Loads f<br>vious Cover | rom<br>(lbs/yr) | Runoff Volume from Impervious Cover (Mgal) |                                |  |
|----------|-----------|----------------|-----------------------------|-----------------|--------------------------------------------|--------------------------------|--|
| %        | sq. ft.   | ТР             | TN                          | TSS             | For the 1.25'' Water Quality Storm         | For an Annual Rainfall of 44'' |  |
| 28       | 72,755    | 3.5            | 36.7                        | 334.0           | 0.057                                      | 2.00                           |  |

| <b>Recommended Green</b><br>Infrastructure Practices | Recharge<br>Potential<br>(Mgal/yr) | TSS Removal<br>Potential (lbs/yr) | Maximum Volume<br>Reduction Potential<br>(gal/storm) | Peak Discharge<br>Reduction Potential<br>(cu. ft./second) | Estimated<br>Size (sq. ft.) | Estimated<br>Cost |
|------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------|
| Bioretention system                                  | 0.052                              | 9                                 | 1,287                                                | 0.13                                                      | 420                         | \$2,100           |
| Pervious pavements                                   | 0.177                              | 30                                | 4,383                                                | 0.45                                                      | 3,380                       | \$84,500          |





### Glad Tidings Assembly of God

- bioretention / rain gardens
- pervious pavements
- drainage areas
- [] property line
  - 2012 Aerial: NJOIT, OGIS



# WAYSIDE FIRE COMPANY



| Subwatershed:  | Jumping Brook                             |
|----------------|-------------------------------------------|
| Site Area:     | 228,528 sq. ft.                           |
| Address:       | 2 Volunteer Way<br>Tinton Falls, NJ 07753 |
| Block and Lot: | Block 124.13, Lot 1                       |



Bioretention systems can be built at the front of the building to capture, treat, and infiltrate rooftop runoff. Parking spaces on the east end of the parking can be replaced with pervious pavement to capture runoff from the parking lot. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

| Impervio | ous Cover | Exis<br>Imperv | sting Loads f<br>vious Cover | rom<br>(lbs/yr) | Runoff Volume from Impervious Cover (Mgal) |                                |  |
|----------|-----------|----------------|------------------------------|-----------------|--------------------------------------------|--------------------------------|--|
| %        | sq. ft.   | ТР             | TN                           | TSS             | For the 1.25" Water Quality Storm          | For an Annual Rainfall of 44'' |  |
| 33       | 74,617    | 3.6            | 37.7                         | 342.6           | 0.058                                      | 2.05                           |  |

| <b>Recommended Green</b><br><b>Infrastructure Practices</b> | Recharge<br>Potential<br>(Mgal/yr) | TSS Removal<br>Potential (lbs/yr) | Maximum Volume<br>Reduction Potential<br>(gal/storm) | Peak Discharge<br>Reduction Potential<br>(cu. ft./second) | Estimated<br>Size (sq. ft.) | Estimated<br>Cost |
|-------------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------|
| Bioretention system                                         | 0.152                              | 26                                | 3,777                                                | 0.39                                                      | 1,220                       | \$6,100           |
| Pervious pavements                                          | 0.327                              | 55                                | 8,086                                                | 0.83                                                      | 3,710                       | \$92,750          |





Wayside Fire Company

- pervious pavements
  - bioretention / rain gardens
- drainage areas
- **[]** property line
  - 2012 Aerial: NJOIT, OGIS



### MONMOUTH REGIONAL HIGH SCHOOL



| Subwatershed:  | Parkers Creek                                 |
|----------------|-----------------------------------------------|
| Site Area:     | 2,715,760 sq. ft.                             |
| Address:       | Norman J. Field Way<br>Tinton Falls, NJ 07724 |
| Block and Lot: | Block 5, Lot 5, 10                            |



Parking spaces along the west driveway and in the south parking lot can be replaced with porous asphalt to capture and infiltrate runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

| Impervio | ous Cover | Existing Loads from<br>Impervious Cover (lbs/yr) |       |        | Runoff Volume from In             | npervious Cover (Mgal)         |
|----------|-----------|--------------------------------------------------|-------|--------|-----------------------------------|--------------------------------|
| %        | sq. ft.   | ТР                                               | TN    | TSS    | For the 1.25" Water Quality Storm | For an Annual Rainfall of 44'' |
| 25       | 670,364   | 32.3                                             | 338.6 | 3077.9 | 0.522                             | 18.39                          |

| <b>Recommended Green</b><br>Infrastructure Practices | Recharge<br>Potential<br>(Mgal/yr) | TSS Removal<br>Potential (lbs/yr) | Maximum Volume<br>Reduction Potential<br>(gal/storm) | Peak Discharge<br>Reduction Potential<br>(cu. ft./second) | Estimated<br>Size (sq. ft.) | Estimated<br>Cost |
|------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------|
| Pervious pavements                                   | 2.141                              | 358                               | 58,322                                               | 6.01                                                      | 16,665                      | \$416,625         |





### Monmouth Regional High School

- pervious pavements
- drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS



# PARK CHURCH



| Subwatershed:  | Parkers Creek                          |
|----------------|----------------------------------------|
| Site Area:     | 81,615 sq. ft.                         |
| Address:       | 31 Park Road<br>Tinton Falls, NJ 07724 |
| Block and Lot: | Block 114, Lot 24.01                   |



Parking spaces along the north west end of the parking lot can be replaced with pervious pavement to capture and infiltrate stormwater runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

| Impervio | ous Cover | Existing Loads from<br>Impervious Cover (lbs/yr) |      |       | Runoff Volume from In             | npervious Cover (Mgal)         |
|----------|-----------|--------------------------------------------------|------|-------|-----------------------------------|--------------------------------|
| %        | sq. ft.   | ТР                                               | TN   | TSS   | For the 1.25" Water Quality Storm | For an Annual Rainfall of 44'' |
| 77       | 62,665    | 3.0                                              | 31.6 | 287.7 | 0.049                             | 1.72                           |

| <b>Recommended Green</b><br>Infrastructure Practices | Recharge<br>Potential<br>(Mgal/yr) | TSS Removal<br>Potential (lbs/yr) | Maximum Volume<br>Reduction Potential<br>(gal/storm) | Peak Discharge<br>Reduction Potential<br>(cu. ft./second) | Estimated<br>Size (sq. ft.) | Estimated<br>Cost |
|------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------|
| Pervious pavements                                   | 0.317                              | 53                                | 7,854                                                | 0.81                                                      | 3,630                       | \$90,750          |





### **Park Church**

|    | pervious pavements       |
|----|--------------------------|
| 3  | drainage areas           |
| :3 | property line            |
|    | 2012 Aerial: NJOIT, OGIS |



# WINDING BROOK SCHOOL



| Subwatershed:  | Parkers Creek                               |
|----------------|---------------------------------------------|
| Site Area:     | 67,218 sq. ft.                              |
| Address:       | 1044 Sycamore Ave<br>Tinton Falls, NJ 07724 |
| Block and Lot: | Block 51, Lot 1                             |



Parking spaces in the parking lot can be replaced with pervious pavement to capture runoff from the parking lot. Additional runoff can be captured by redirecting downspouts to flow into the pervious pavement. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

| Impervio | ous Cover | Existing Loads from<br>Impervious Cover (lbs/yr) |     |      | Runoff Volume from In             | npervious Cover (Mgal)         |
|----------|-----------|--------------------------------------------------|-----|------|-----------------------------------|--------------------------------|
| %        | sq. ft.   | ТР                                               | TN  | TSS  | For the 1.25" Water Quality Storm | For an Annual Rainfall of 44'' |
| 25       | 16,805    | 0.8                                              | 8.5 | 77.2 | 0.013                             | 0.46                           |

| <b>Recommended Green</b><br>Infrastructure Practices | Recharge<br>Potential<br>(Mgal/yr) | TSS Removal<br>Potential (lbs/yr) | Maximum Volume<br>Reduction Potential<br>(gal/storm) | Peak Discharge<br>Reduction Potential<br>(cu. ft./second) | Estimated<br>Size (sq. ft.) | Estimated<br>Cost |
|------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------|
| Pervious pavements                                   | 0.131                              | 22                                | 3,254                                                | 0.34                                                      | 2,000                       | \$50,000          |





### Winding Brook School

|           | pervious pavements       |
|-----------|--------------------------|
| []        | drainage areas           |
| []        | property line            |
| $\square$ | 2012 Aerial: NJOIT, OGIS |



# **GRACE CHRISTIAN CHURCH**



| Subwatershed:  | Pine Brook                                   |
|----------------|----------------------------------------------|
| Site Area:     | 143,158 sq. ft.                              |
| Address:       | 1961 Wayside Road,<br>Tinton Falls, NJ 07724 |
| Block and Lot: | Block 97, Lot 45                             |



A rain garden can be placed at the front of the church to capture runoff from the rooftop. Parking spaces at the rear of the church can be replaced with pervious pavement to infiltrate runoff from the parking lot and rooftop runoff already being directed to the driveway. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

| Impervious Cover |         | Existing Loads from<br>Impervious Cover (lbs/yr) |      |       | <b>Runoff Volume from Impervious Cover (Mgal)</b> |                                |  |
|------------------|---------|--------------------------------------------------|------|-------|---------------------------------------------------|--------------------------------|--|
| %                | sq. ft. | ТР                                               | TN   | TSS   | For the 1.25" Water Quality Storm                 | For an Annual Rainfall of 44'' |  |
| 27               | 38,327  | 1.8                                              | 19.4 | 176.0 | 0.030                                             | 1.05                           |  |

| Recommended Green<br>Infrastructure Practices | Recharge<br>Potential<br>(Mgal/yr) | TSS Removal<br>Potential (lbs/yr) | Maximum Volume<br>Reduction Potential<br>(gal/storm) | Peak Discharge<br>Reduction Potential<br>(cu. ft./second) | Estimated<br>Size (sq. ft.) | Estimated<br>Cost |
|-----------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------|
| Bioretention system                           | 0.048                              | 8                                 | 1,189                                                | 0.12                                                      | 385                         | \$1,925           |
| Pervious pavements                            | 0.928                              | 155                               | 22,956                                               | 2.37                                                      | 6,570                       | \$164,250         |





### **Grace Christian Church**

- pervious pavements
  - bioretention / rain gardens
- drainage areas
- **[]** property line
  - 2012 Aerial: NJOIT, OGIS



# LUTHER MEMORIAL EVANGELICAL CHURCH



| Pine Brook                               |
|------------------------------------------|
| 196,871 sq. ft.                          |
| 818 Tinton Ave<br>Tinton Falls, NJ 07724 |
| Block 68.02, Lot 19,20                   |
|                                          |



Parking spaces at the south end of the parking lot can be replaced with pervious pavement to capture, treat, and infiltrate runoff from the parking lot. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

| Impervious Cover |         | Existing Loads from<br>Impervious Cover (lbs/yr) |      |       | <b>Runoff Volume from Impervious Cover (Mgal)</b> |                                |  |
|------------------|---------|--------------------------------------------------|------|-------|---------------------------------------------------|--------------------------------|--|
| %                | sq. ft. | ТР                                               | TN   | TSS   | For the 1.25" Water Quality Storm                 | For an Annual Rainfall of 44'' |  |
| 39               | 77,453  | 3.7                                              | 39.1 | 355.6 | 0.060                                             | 2.12                           |  |

| Recommended Green<br>Infrastructure Practices | Recharge<br>Potential<br>(Mgal/yr) | TSS Removal<br>Potential (lbs/yr) | Maximum Volume<br>Reduction Potential<br>(gal/storm) | Peak Discharge<br>Reduction Potential<br>(cu. ft./second) | Estimated<br>Size (sq. ft.) | Estimated<br>Cost |
|-----------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------|
| Pervious pavements                            | 0.745                              | 125                               | 18,431                                               | 1.90                                                      | 7,430                       | \$185,750         |



![](_page_34_Picture_2.jpeg)

#### Luther Memorial Evangelical Church

- pervious pavements
- drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS

![](_page_34_Figure_8.jpeg)

# MAHALA F. ATCHISON SCHOOL

![](_page_35_Picture_1.jpeg)

| Subwatershed:  | Pine Brook                                  |
|----------------|---------------------------------------------|
| Site Area:     | 1,335,541 sq. ft.                           |
| Address:       | 961 Sycamore Ave<br>Tinton Falls, NJ, 07724 |
| Block and Lot: | Block 44, Lot 1,2                           |

![](_page_35_Picture_3.jpeg)

Parking spaces in the north parking lot can be replaced with pervious pavement to infiltrate parking lot runoff. The tennis court can be repaved with pervious pavement to capture and infiltrate additional runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

| Impervio | ous Cover | Existing Loads from<br>Impervious Cover (lbs/yr) |       |         | <b>Runoff Volume from Impervious Cover (Mgal)</b> |                                |  |
|----------|-----------|--------------------------------------------------|-------|---------|---------------------------------------------------|--------------------------------|--|
| %        | sq. ft.   | ТР                                               | TN    | TSS     | For the 1.25" Water Quality Storm                 | For an Annual Rainfall of 44'' |  |
| 19       | 259,249   | 12.5                                             | 130.9 | 1,190.3 | 0.202                                             | 7.11                           |  |

| Recommended Green<br>Infrastructure Practices | Recharge<br>Potential<br>(Mgal/yr) | TSS Removal<br>Potential (lbs/yr) | Maximum Volume<br>Reduction Potential<br>(gal/storm) | Peak Discharge<br>Reduction Potential<br>(cu. ft./second) | Estimated<br>Size (sq. ft.) | Estimated<br>Cost |
|-----------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------|
| Pervious pavements                            | 1.150                              | 192                               | 28,454                                               | 2.93                                                      | 20,900                      | \$522,500         |

![](_page_36_Picture_1.jpeg)

![](_page_36_Picture_2.jpeg)

### Mahala F. Atchison School

|   | pervious | pavements |
|---|----------|-----------|
| 1 | drainaga | aroac     |

- drainage areas
- **[]** property line
- 2012 Aerial: NJOIT, OGIS

![](_page_36_Picture_8.jpeg)

### **MONMOUTH CHURCH OF CHRIST**

![](_page_37_Picture_1.jpeg)

| Subwatershed:  | Pine Brook                              |
|----------------|-----------------------------------------|
| Site Area:     | 317,962 sq. ft.                         |
| Address:       | 312 Hance Ave<br>Tinton Falls, NJ 07724 |
| Block and Lot: | Block 37, Lot 13                        |

![](_page_37_Picture_3.jpeg)

A rain garden can be implemented in the northeast region with curb cuts can be built to capture, treat, and infiltrate parking lot runoff. Two concrete sidewalks to the east of the church can be made pervious to capture and infiltrate runoff. A strip of pervious asphalt can also be implemented in the north strip of parking spaces to capture additional parking lot runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

| Impervio | ous Cover | Existing Loads from<br>Impervious Cover (lbs/yr) |      |       | <b>Runoff Volume from Impervious Cover (Mgal)</b> |                                |  |
|----------|-----------|--------------------------------------------------|------|-------|---------------------------------------------------|--------------------------------|--|
| %        | sq. ft.   | ТР                                               | TN   | TSS   | For the 1.25" Water Quality Storm                 | For an Annual Rainfall of 44'' |  |
| 32       | 102,059   | 4.9                                              | 51.5 | 468.6 | 0.080                                             | 2.80                           |  |

| <b>Recommended Green</b><br><b>Infrastructure Practices</b> | Recharge<br>Potential<br>(Mgal/yr) | TSS Removal<br>Potential (lbs/yr) | Maximum Volume<br>Reduction Potential<br>(gal/storm) | Peak Discharge<br>Reduction Potential<br>(cu. ft./second) | Estimated<br>Size (sq. ft.) | Estimated<br>Cost |
|-------------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------|
| Bioretention systems                                        | 0.188                              | 31                                | 4,645                                                | 0.48                                                      | 1,500                       | \$7,500           |
| Pervious pavement                                           | 0.507                              | 85                                | 12,544                                               | 1.29                                                      | 4,825                       | \$120,625         |

![](_page_38_Picture_1.jpeg)

![](_page_38_Picture_2.jpeg)

# Monmouth Church of Christ

- pervious pavements
  - bioretention / rain gardens
- drainage areas
- **[]** property line
  - 2012 Aerial: NJOIT, OGIS

![](_page_38_Picture_9.jpeg)

### MONMOUTH REFORM TEMPLE

![](_page_39_Picture_1.jpeg)

| Subwatershed:  | Pine Brook                              |
|----------------|-----------------------------------------|
| Site Area:     | 263,655 sq. ft.                         |
| Address:       | 332 Hance Ave<br>Tinton Falls, NJ 07724 |
| Block and Lot: | Block 37, Lot 4                         |

![](_page_39_Picture_3.jpeg)

Parking spaces in the rear parking lot can be replaced with pervious pavement to infiltrate runoff from the parking lot. A rain garden can be installed on the south face to capture, treat, and infiltrate roof runoff from the temple rooftop by disconnecting downspouts. Another rain garden be can be implemented at the northeast by capturing runoff from the driveway with a curb cut or trench drain. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

| Impervio | Impervious Cover |     | sting Loads f<br>vious Cover | rom<br>(lbs/yr) | Runoff Volume from In             | npervious Cover (Mgal)         |
|----------|------------------|-----|------------------------------|-----------------|-----------------------------------|--------------------------------|
| %        | sq. ft.          | ТР  | TN                           | TSS             | For the 1.25" Water Quality Storm | For an Annual Rainfall of 44'' |
| 36       | 95,764           | 4.6 | 48.4                         | 439.7           | 0.075                             | 2.63                           |

| <b>Recommended Green</b><br><b>Infrastructure Practices</b> | Recharge<br>Potential<br>(Mgal/yr) | TSS Removal<br>Potential (lbs/yr) | Maximum Volume<br>Reduction Potential<br>(gal/storm) | Peak Discharge<br>Reduction Potential<br>(cu. ft./second) | Estimated<br>Size (sq. ft.) | Estimated<br>Cost |
|-------------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------|
| Bioretention systems                                        | 0.137                              | 23                                | 3,388                                                | 0.35                                                      | 1,325                       | \$6,625           |
| Pervious pavements                                          | 0.166                              | 28                                | 4,121                                                | 0.42                                                      | 2,800                       | \$70,000          |

![](_page_40_Picture_1.jpeg)

![](_page_40_Picture_2.jpeg)

#### Monmouth Reform Temple

- disconnected downspouts
- pervious pavements
  - bioretention / rain gardens
- drainage areas
- **[]** property line
- 2012 Aerial: NJOIT, OGIS

![](_page_40_Picture_10.jpeg)

# PINE BROOK FIRE CO. INC

![](_page_41_Picture_1.jpeg)

| Subwatershed:  | Pine Brook                                 |
|----------------|--------------------------------------------|
| Site Area:     | 52,118 sq. ft.                             |
| Address:       | 70 Hamilton Road<br>Tinton Falls, NJ 07724 |
| Block and Lot: | Block 94, Lot 1.01                         |

![](_page_41_Picture_3.jpeg)

Parking spaces on the north side of the site can be replaced with porous asphalt to capture and infiltrate stormwater runoff from the parking area. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

| Impervio | ous Cover | Exis<br>Imperv | ting Loads f<br>vious Cover | rom<br>(lbs/yr) | Runoff Volume from Impervious Cover (Mgal) |                                |
|----------|-----------|----------------|-----------------------------|-----------------|--------------------------------------------|--------------------------------|
| %        | sq. ft.   | ТР             | TN                          | TSS             | For the 1.25" Water Quality Storm          | For an Annual Rainfall of 44'' |
| 59       | 30,801    | 1.5            | 15.6                        | 141.4           | 0.024                                      | 0.84                           |

| <b>Recommended Green</b><br>Infrastructure Practices | Recharge<br>Potential<br>(Mgal/yr) | TSS Removal<br>Potential (lbs/yr) | Maximum Volume<br>Reduction Potential<br>(gal/storm) | Peak Discharge<br>Reduction Potential<br>(cu. ft./second) | Estimated<br>Size (sq. ft.) | Estimated<br>Cost |
|------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------|
| Pervious pavements                                   | 0.152                              | 25                                | 3,762                                                | 2,200                                                     | \$55,000                    |                   |

![](_page_42_Picture_1.jpeg)

![](_page_42_Picture_2.jpeg)

#### Pine Brook Fire Co. Inc

|    | pervious pavements       |
|----|--------------------------|
| [] | drainage areas           |
| [] | property line            |
|    | 2012 Aerial: NJOIT, OGIS |

![](_page_42_Picture_5.jpeg)

# TINTON FALLS MIDDLE SCHOOL

![](_page_43_Picture_1.jpeg)

| Subwatershed:  | Pine Brook                               |
|----------------|------------------------------------------|
| Site Area:     | 729,830 sq. ft.                          |
| Address:       | 674 Tinton Ave<br>Tinton Falls, NJ 07724 |
| Block and Lot: | Block 74, Lot 10                         |

![](_page_43_Picture_3.jpeg)

Parking spaces at the south end of the parking lot can be replaced with pervious pavement to infiltrate runoff. Additional spaces adjacent to the library can be replaced to capture runoff from the building's rooftop. Two bioretention system can be installed near the small building to the southwest to capture, treat, and infiltrate rooftop runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

| Impervio | ous Cover | Existing Loads from<br>Impervious Cover (lbs/yr) |       |        | Runoff Volume from In             | npervious Cover (Mgal)         |
|----------|-----------|--------------------------------------------------|-------|--------|-----------------------------------|--------------------------------|
| %        | sq. ft.   | ТР                                               | TN    | TSS    | For the 1.25" Water Quality Storm | For an Annual Rainfall of 44'' |
| 31       | 229,213   | 11.1                                             | 115.8 | 1052.4 | 0.179                             | 6.29                           |

| <b>Recommended Green</b><br><b>Infrastructure Practices</b> | Recharge<br>Potential<br>(Mgal/yr) | TSS Removal<br>Potential (lbs/yr) | Maximum Volume<br>Reduction Potential<br>(gal/storm) | Peak Discharge<br>Reduction Potential<br>(cu. ft./second) | Estimated<br>Size (sq. ft.) | Estimated<br>Cost |
|-------------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------|
| Bioretention systems                                        | 0.069                              | 11                                | 1,698                                                | 0.18                                                      | 685                         | \$3,425           |
| Pervious pavements                                          | 0.262                              | 44                                | 6,478                                                | 0.67                                                      | 3,285                       | \$82,125          |

![](_page_44_Picture_1.jpeg)

![](_page_44_Picture_2.jpeg)

Tinton Falls Middle School

- pervious pavements
- bioretention / rain gardens
- drainage areas
- **[]** property line
- 2012 Aerial: NJOIT, OGIS

![](_page_44_Picture_9.jpeg)

# **EMMANUEL BAPTIST CHURCH**

![](_page_45_Picture_1.jpeg)

| Subwatershed:  | Poricy Brook                           |
|----------------|----------------------------------------|
| Site Area:     | 28,800 sq. ft.                         |
| Address:       | 61 Cherry St<br>Tinton Falls, NJ 07724 |
| Block and Lot: | Block 12.02, Lot 41,43,45              |

![](_page_45_Picture_3.jpeg)

Parking spots on the east side of the building can be replaced with pervious pavement to capture and infiltrate parking lot runoff, and additional runoff can potentially be captured by redirecting downspouts from the building. A bioretention system can be installed in front of the building with a trench drain to capture the rooftop runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

| Impervio | vious Cover Existing Loads from<br>Impervious Cover (lbs/yr) |     |      | rom<br>(lbs/yr) | Runoff Volume from Impervious Cover (Mgal) |                                |  |
|----------|--------------------------------------------------------------|-----|------|-----------------|--------------------------------------------|--------------------------------|--|
| %        | sq. ft.                                                      | ТР  | TN   | TSS             | For the 1.25" Water Quality Storm          | For an Annual Rainfall of 44'' |  |
| 73       | 21,001                                                       | 1.0 | 10.6 | 96.4            | 0.016                                      | 0.58                           |  |

| Recommended Green<br>Infrastructure Practices | Recharge<br>Potential<br>(Mgal/yr) | TSS Removal<br>Potential (lbs/yr) | Maximum Volume<br>Reduction Potential<br>(gal/storm) | Peak Discharge<br>Reduction Potential<br>(cu. ft./second) | Estimated<br>Size (sq. ft.) | Estimated<br>Cost |
|-----------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------|
| Bioretention systems                          | 0.056                              | 9                                 | 1,391                                                | 0.14                                                      | 535                         | \$2,675           |
| Pervious pavements                            | 0.129                              | 22                                | 3,194                                                | 0.33                                                      | 2,235                       | \$55,875          |

![](_page_46_Picture_1.jpeg)

![](_page_46_Picture_2.jpeg)

### **Emmanuel Baptist Church**

| · · · · · · · · · · · · · · · · · · · | The second se |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| nonuolie                              | novomonte                                                                                                       |
| DEIVIOUS                              | Davenienis                                                                                                      |
| 001110010                             | portonitorito                                                                                                   |

- bioretention / rain gardens
- drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS

![](_page_46_Picture_9.jpeg)

### NORTHSIDE ENGINE COMPANY

![](_page_47_Picture_1.jpeg)

| Subwatershed:  | Poricy Brook                               |
|----------------|--------------------------------------------|
| Site Area:     | 37,760 sq. ft.                             |
| Address:       | 35 Springdale Ave<br>Tinton Falls NJ 07724 |
| Block and Lot: | Block 6.01, Lot 4                          |

![](_page_47_Picture_3.jpeg)

Parking spots on the north side of the building can be replaced with pervious pavement to capture and infiltrate stormwater runoff from the parking lot, and additional runoff can be captured by redirecting downspouts from the roof into them. A rain water harvesting system can be installed in the front of the building to capture runoff from the roof. This water could be used to wash the fire trucks. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

| Impervio | ous Cover | Exis<br>Imperv | sting Loads f<br>vious Cover | rom<br>(lbs/yr) | <b>Runoff Volume from Impervious Cover (Mgal)</b> |                                |  |
|----------|-----------|----------------|------------------------------|-----------------|---------------------------------------------------|--------------------------------|--|
| %        | sq. ft.   | ТР             | TN                           | TSS             | For the 1.25" Water Quality Storm                 | For an Annual Rainfall of 44'' |  |
| 55       | 20,721    | 1.0            | 10.5                         | 95.1            | 0.016                                             | 0.57                           |  |

| <b>Recommended Green</b><br>Infrastructure Practices | Recharge<br>Potential<br>(Mgal/yr) | TSS Removal<br>Potential (lbs/yr) | Maximum Volume<br>Reduction Potential<br>(gal/storm) | Peak Discharge<br>Reduction Potential<br>(cu. ft./second) | Estimated<br>Size (sq. ft.) | Estimated<br>Cost |
|------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------|
| Pervious pavements                                   | 0.119                              | 20                                | 2,947                                                | 0.30                                                      | 2,045                       | \$51,125          |
| Rainwater harvesting system                          | 0.024                              | 4                                 | 598                                                  | 0.06                                                      | 600 (gal)                   | \$1,200           |

![](_page_48_Picture_1.jpeg)

![](_page_48_Picture_2.jpeg)

### Northside Engine Company

| pervious | pavements |
|----------|-----------|
|          |           |

- rainwater harvesting
- drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS

![](_page_48_Picture_9.jpeg)

### **OAKWOOD SCHOOL**

![](_page_49_Picture_1.jpeg)

| Subwatershed:  | Poricy Brook                              |
|----------------|-------------------------------------------|
| Site Area:     | 162,398 sq. ft.                           |
| Address:       | 62 Hance Avenue<br>Tinton Falls, NJ 07724 |
| Block and Lot: | Block 31.01, Lot 2,3                      |

![](_page_49_Picture_3.jpeg)

Parking spaces in the north parking lot area can be replaced with pervious pavement to infiltrate parking lot runoff. Additional spaces just south of the church can be replaced to capture runoff from the driveway and the rooftop. A rain garden can be installed at the southeast end of the site to capture, treat, and infiltrate more parking lot runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

| Impervio | Impervious Cover |     | sting Loads f<br>vious Cover | rom<br>(lbs/yr) | <b>Runoff Volume from Impervious Cover (Mgal)</b> |                                |  |
|----------|------------------|-----|------------------------------|-----------------|---------------------------------------------------|--------------------------------|--|
| %        | sq. ft.          | ТР  | TN                           | TSS             | For the 1.25" Water Quality Storm                 | For an Annual Rainfall of 44'' |  |
| 21       | 34,909           | 1.7 | 17.6                         | 160.3           | 0.027                                             | 0.96                           |  |

| <b>Recommended Green</b><br><b>Infrastructure Practices</b> | Recharge<br>Potential<br>(Mgal/yr) | TSS Removal<br>Potential (lbs/yr) | Maximum Volume<br>Reduction Potential<br>(gal/storm) | Peak Discharge<br>Reduction Potential<br>(cu. ft./second) | Estimated<br>Size (sq. ft.) | Estimated<br>Cost |
|-------------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-------------------|
| Bioretention systems                                        | 0.055                              | 9                                 | 920                                                  | 0.09                                                      | 535                         | \$2,675           |
| Pervious pavements                                          | 0.633                              | 106                               | 15,671                                               | 1.62                                                      | 4,050                       | \$101,250         |

![](_page_50_Picture_1.jpeg)

![](_page_50_Picture_2.jpeg)

#### **Oakwood School**

| and the second second second second | The second second second second second |
|-------------------------------------|----------------------------------------|
| nonvious                            | novomonte                              |
| DEIVIUUS                            | Davenienis                             |
| 1                                   | 1                                      |

- bioretention / rain gardens
- drainage areas
- **[]** property line
- 2012 Aerial: NJOIT, OGIS

![](_page_50_Picture_9.jpeg)

c. Summary of Existing Conditions

|                                                    | T            | 1         |            | 1          | 1       |         |                  |      |       | T       | -  |
|----------------------------------------------------|--------------|-----------|------------|------------|---------|---------|------------------|------|-------|---------|----|
|                                                    |              |           |            |            |         |         |                  |      |       |         |    |
|                                                    |              |           |            | <b>T</b> . | Existi  | ng Annu | al Loads         | ЪС   | I.C.  | I.C.    | W  |
| Subwatershed/Site Name/Total Site Info/GI Practice | Area         | Area      | Block      | Lot        | TP      | TN      | TSS              | 1.C. | Area  | Area    | () |
|                                                    | (ac)         | (SF)      |            |            | (lb/yr) | (lb/yr) | (lb/yr)          | %    | (ac)  | (SF)    |    |
| HIMDING DDOOK SUDWATEDSHED                         | 14 97        | 647 008   |            |            | 10.9    | 112 1   | 1 0 2 9 0        |      | 5 1 4 | 222.008 |    |
| JUMPING DROOK SUDWATERSHED                         | 14.07        | 047,908   |            |            | 10.0    | 115.1   | 1,028.0          |      | 5.14  | 225,908 |    |
| Bongarzone Funeral Home                            |              |           |            |            |         |         |                  |      |       |         |    |
| Total Site Info                                    | 3.59         | 156,569   | 124        | 28         | 3.7     | 38.7    | 351.4            | 49   | 1.76  | 76,536  |    |
|                                                    | 0.07         | 100,007   | 121        | 20         | 517     | 2017    | 00111            | .,   | 11/0  | 10,000  |    |
| Glad Tidings Assembly of God                       |              |           |            |            |         |         |                  |      |       |         |    |
| Total Site Info                                    | 6.03         | 262,811   | 128.03     | 28.03      | 3.5     | 36.7    | 334.0            | 28   | 1.67  | 72,755  |    |
|                                                    |              |           |            |            |         |         |                  |      |       |         |    |
| Wayside Fire Company                               |              |           |            |            |         |         |                  |      |       |         |    |
| Total Site Info                                    | 5.25         | 228,528   | 124.13     | 1          | 3.6     | 37.7    | 342.6            | 33   | 1.71  | 74,617  |    |
|                                                    |              |           |            |            |         |         |                  |      |       |         |    |
|                                                    |              |           |            |            |         |         |                  |      |       |         |    |
| PARKERS CREEK / OCEANPORT CREEK SUBWATERSHED       | 65.76        | 2,864,593 |            |            | 36.1    | 378.7   | 3,442.8          |      | 17.21 | 749,834 |    |
|                                                    |              |           |            |            |         |         |                  |      |       |         |    |
| Monmouth Regional High School                      | < 2 2 7      |           |            | = 10       |         | 220 6   | <b>2 0 7 7 0</b> | ~ -  | 15.00 |         |    |
| Total Site Info                                    | 62.35        | 2,715,760 | 54         | 5, 10      | 32.3    | 338.6   | 3,077.9          | 25   | 15.39 | 670,364 |    |
| Davis Chunch                                       |              |           |            |            |         |         |                  |      |       |         |    |
| Tatal Site Info                                    | 1 87         | 81 615    | 114        | 24.01      | 3.0     | 31.6    | 2877             | 77   | 1 44  | 67 665  |    |
| 10tal Site Info                                    | 1.07         | 81,015    | 114        | 24.01      | 5.0     | 51.0    | 201.1            | //   | 1.44  | 02,005  |    |
| Winding Brook School                               |              |           |            |            |         |         |                  |      |       |         |    |
| Total Site Info                                    | 1.54         | 67.218    | 51         | 1          | 0.8     | 8.5     | 77.2             | 25   | 0.39  | 16.805  |    |
|                                                    | 110          | 07,210    | • •        | -          | 0.0     | 0.0     |                  |      | 0.07  | 10,000  |    |
|                                                    |              |           |            |            |         |         |                  |      |       |         |    |
| PINE BROOK / HOCKHOCKSON BROOK SUBWATERSHED        | <b>69.77</b> | 3,039,135 |            |            | 40.2    | 420.6   | 3,824.0          |      | 19.12 | 832,865 |    |
|                                                    |              |           |            |            |         |         |                  |      |       |         |    |
| Grace Christian Church                             |              |           |            |            |         |         |                  |      |       |         |    |
| Total Site Info                                    | 3.29         | 143,158   | 97         | 45         | 1.8     | 19.4    | 176.0            | 27   | 0.88  | 38,327  |    |
|                                                    |              |           |            |            |         |         |                  |      |       |         |    |
| Luther Memorial Evangelical Church                 | 4.50         | 106.071   | $c_{0}$ 02 | 10.20      | 27      | 20.1    | 255 (            | 20   | 1 70  | 77 452  |    |
| 1 otal Site Info                                   | 4.52         | 190,871   | 08.02      | 19, 20     | 5.7     | 39.1    | 333.0            | 39   | 1./8  | //,455  |    |
| Mahala F Atchison School                           |              |           |            |            |         |         |                  |      |       |         |    |
| Total Site Info                                    | 30.66        | 1,335,541 | 44         | 1.2        | 12.5    | 130.9   | 1,190,3          | 19   | 5.95  | 259.249 |    |
|                                                    | 20.00        | 1,000,011 |            | -, 2       | 12.0    | 100.7   | 1,170.0          | .,   | 0.70  | ,_ !)   |    |
| Monmouth Church of Christ                          |              |           |            |            |         |         |                  |      |       |         |    |
| Total Site Info                                    | 7.30         | 317,962   | 37         | 13         | 4.9     | 51.5    | 468.6            | 32   | 2.34  | 102,059 |    |
|                                                    |              |           |            |            |         |         |                  |      |       |         |    |

1

| Runoff Volumes from I.C. |        |  |  |  |  |  |
|--------------------------|--------|--|--|--|--|--|
| Water Quality Storm      |        |  |  |  |  |  |
| (1.25" over 2-hours)     | Annual |  |  |  |  |  |
| (Mgal)                   | (Mgal) |  |  |  |  |  |
| 0.174                    | 6.14   |  |  |  |  |  |
| 0.060                    | 2.10   |  |  |  |  |  |
| 0.057                    | 2.00   |  |  |  |  |  |
| 0.058                    | 2.05   |  |  |  |  |  |
| 0.584                    | 20.57  |  |  |  |  |  |
| 0.522                    | 18.39  |  |  |  |  |  |
| 0.049                    | 1.72   |  |  |  |  |  |
| 0.013                    | 0.46   |  |  |  |  |  |
| 0.649                    | 22.84  |  |  |  |  |  |
| 0.030                    | 1.05   |  |  |  |  |  |
| 0.060                    | 2.12   |  |  |  |  |  |
| 0.202                    | 7.11   |  |  |  |  |  |
| 0.080                    | 2.80   |  |  |  |  |  |

#### **Summary of Existing Site Conditions**

|                                                    |       |         |       |            |         |                           |         |      |      |         | Runoff Volumes fro   | om I.C. |
|----------------------------------------------------|-------|---------|-------|------------|---------|---------------------------|---------|------|------|---------|----------------------|---------|
|                                                    |       |         |       |            | Existi  | Existing Annual Loads     |         |      | I.C. | I.C.    | Water Quality Storm  | İ       |
| Subwatershed/Site Name/Total Site Info/GI Practice | Area  | Area    | Block | Lot        | TP      | TP TN TSS I.C             |         | I.C. | Area | Area    | (1.25" over 2-hours) | Annual  |
|                                                    | (ac)  | (SF)    |       |            | (lb/yr) | (lb/yr) (lb/yr) (lb/yr) % |         | %    | (ac) | (SF)    | (Mgal)               | (Mgal)  |
| Monmouth Reform Temple<br>Total Site Info          | 6.05  | 263,655 | 37    | 4          | 4.6     | 48.4                      | 439.7   | 36   | 2.20 | 95,764  | 0.075                | 2.63    |
| Pine Brook Fire Co. Inc<br>Total Site Info         | 1.20  | 52,118  | 94    | 1.01       | 1.5     | 15.6                      | 141.4   | 59   | 0.71 | 30,801  | 0.024                | 0.84    |
| Tinton Falls Middle School<br>Total Site Info      | 16.75 | 729,830 | 74    | 10         | 11.1    | 115.8                     | 1,052.4 | 31   | 5.26 | 229,213 | 0.179                | 6.29    |
| PORICY BROOK / SWIMMING RIVER SUBWATERSHED         | 5.26  | 228,958 |       |            | 3.7     | 38.7                      | 351.8   |      | 1.76 | 76,631  | 0.060                | 2.10    |
| Emmanuel Baptist Church<br>Total Site Info         | 0.66  | 28,800  | 12.02 | 41, 43, 45 | 1.0     | 10.6                      | 96.4    | 73   | 0.48 | 21,001  | 0.016                | 0.58    |
| Northside Engine Company<br>Total Site Info        | 0.87  | 37,760  | 6.01  | 4          | 1.0     | 10.5                      | 95.1    | 55   | 0.48 | 20,721  | 0.016                | 0.57    |
| Oakwood School<br>Total Site Info                  | 3.73  | 162,398 | 31.01 | 2, 3       | 1.7     | 17.6                      | 160.3   | 21   | 0.80 | 34,909  | 0.027                | 0.96    |

d. Summary of Proposed Green Infrastructure Practices

|   |                                                    | Potential Mar | nagement Area |           |             | Max Volume  | Peak Discharge |         | <u> </u> |          |           |         |
|---|----------------------------------------------------|---------------|---------------|-----------|-------------|-------------|----------------|---------|----------|----------|-----------|---------|
|   |                                                    |               |               | Recharge  | TSS Removal | Reduction   | Reduction      | Size of | Unit     |          | Total     | LC      |
|   | Subwatershed/Site Name/Total Site Info/GI Practice | Area          | Area          | Potential | Potential   | Potential   | Potential      | BMP     | Cost     | Unit     | Cost      | Treated |
|   |                                                    | (SF)          | (ac)          | (Mgal/yr) | (lbs/yr)    | (gal/storm) | (cfs)          | (SF)    | (\$)     | Cint     | (\$)      | %       |
|   |                                                    |               |               | ( 8, 5, 7 |             |             |                |         |          | <u> </u> |           |         |
|   | JUMPING BROOK SUBWATERSHED                         | 36,790        | 0.84          | 0.959     | 160         | 23,727      | 2.44           | 13,590  |          |          | \$306,200 | 16.4%   |
| 1 | Bongarzone Funeral Home                            |               |               |           |             |             |                |         |          |          |           |         |
|   | Pervious pavements                                 | 9,600         | 0.22          | 0.250     | 42          | 6,193       | 0.64           | 4,830   | 25       | SF       | \$120,750 | 12.5%   |
|   | Total Site Info                                    | 9,600         | 0.22          | 0.250     | 42          | 6,193       | 0.64           | 4,830   |          |          | \$120,750 | 12.5%   |
| 2 | Glad Tidings Assembly of God                       |               |               |           |             |             |                |         |          |          |           |         |
|   | Bioretention systems/rain gardens                  | 2,000         | 0.05          | 0.052     | 9           | 1,287       | 0.13           | 420     | 5        | SF       | \$2,100   | 2.7%    |
|   | Pervious pavements                                 | 6,800         | 0.16          | 0.177     | 30          | 4,383       | 0.45           | 3,380   | 25       | SF       | \$84,500  | 9.3%    |
|   | Total Site Info                                    | 8,800         | 0.20          | 0.229     | 38          | 5,670       | 0.58           | 3,830   |          |          | \$86,600  | 12.1%   |
| 3 | Wayside Fire Company                               |               |               |           |             |             |                |         |          |          |           |         |
|   | Bioretention systems/rain gardens                  | 5,850         | 0.13          | 0.152     | 26          | 3,777       | 0.39           | 1,220   | 5        | SF       | \$6,100   | 7.8%    |
|   | Pervious pavements                                 | 12,540        | 0.29          | 0.327     | 55          | 8,086       | 0.83           | 3,710   | 25       | SF       | \$92,750  | 16.8%   |
|   | Total Site Info                                    | 18,390        | 0.42          | 0.479     | 80          | 11,863      | 1.22           | 4,930   |          |          | \$98,850  | 24.6%   |
|   | PARKERS CREEK / OCEANPORT CREEK SUBWATERSHED       | 99,405        | 2.28          | 2.590     | 434         | 69,429      | 7.16           | 22,295  |          |          | \$557,375 | 13.3%   |
| 4 | Monmouth Regional High School                      |               |               |           |             |             |                |         |          |          |           |         |
|   | Pervious pavements                                 | 82,185        | 1.89          | 2.141     | 358         | 58,322      | 6.01           | 16,665  | 25       | SF       | \$416,625 | 12.3%   |
|   | Total Site Info                                    | 82,185        | 1.89          | 2.141     | 358         | 58,322      | 6.01           | 16,665  |          |          | \$416,625 | 12.3%   |
| 5 | Park Church                                        |               |               |           |             |             |                |         |          |          |           |         |
|   | Pervious pavements                                 | 12,180        | 0.28          | 0.317     | 53          | 7,854       | 0.81           | 3,630   | 25       | SF       | \$90,750  | 19.4%   |
|   | Total Site Info                                    | 12,180        | 0.28          | 0.317     | 53          | 7,854       | 0.81           | 3,630   |          |          | \$90,750  | 19.4%   |
| 6 | Winding Brook School                               |               |               |           |             |             |                |         |          |          |           |         |
|   | Pervious pavements                                 | 5,040         | 0.12          | 0.131     | 22          | 3,254       | 0.34           | 2,000   | 25       | SF       | \$50,000  | 30.0%   |
|   | Total Site Info                                    | 5,040         | 0.12          | 0.131     | 22          | 3,254       | 0.34           | 2,000   |          |          | \$50,000  | 30.0%   |

#### **Summary of Proposed Green Infrastructure Practices**

|    |                                                    | Potential Management Area |      |           |             | Max Volume  | Peak Discharge |         |      |      |             |         |
|----|----------------------------------------------------|---------------------------|------|-----------|-------------|-------------|----------------|---------|------|------|-------------|---------|
|    |                                                    |                           |      | Recharge  | TSS Removal | Reduction   | Reduction      | Size of | Unit |      | Total       | I.C.    |
|    | Subwatershed/Site Name/Total Site Info/GI Practice | Area                      | Area | Potential | Potential   | Potential   | Potential      | BMP     | Cost | Unit | Cost        | Treated |
|    |                                                    | (SF)                      | (ac) | (Mgal/yr) | (lbs/yr)    | (gal/storm) | (cfs)          | (SF)    | (\$) |      | (\$)        | %       |
|    | PINE BROOK / HOCKHOCKSON BROOK SUBWATERSHED        | 161,720                   | 3.71 | 4.350     | 728         | 107,667     | 11.10          | 51,905  |      |      | \$1,219,725 | 19.4%   |
| 7  | Grace Christian Church                             |                           |      |           |             |             |                |         |      |      |             |         |
|    | Bioretention systems/rain gardens                  | 1,850                     | 0.04 | 0.048     | 8           | 1,189       | 0.12           | 385     | 5    | SF   | \$1,925     | 4.8%    |
|    | Pervious pavements                                 | 35,600                    | 0.82 | 0.928     | 155         | 22,956      | 2.37           | 6,570   | 25   | SF   | \$164,250   | 92.9%   |
|    | Total Site Info                                    | 37,450                    | 0.86 | 0.976     | 163         | 24,145      | 2.49           | 6,955   |      |      | \$166,175   | 97.7%   |
| 8  | Luther Memorial Evangelical Church                 |                           |      |           |             |             |                |         |      |      |             |         |
|    | Pervious pavements                                 | 28,580                    | 0.66 | 0.745     | 125         | 18,431      | 1.90           | 7,430   | 25   | SF   | \$185,750   | 36.9%   |
|    | Total Site Info                                    | 28,580                    | 0.66 | 0.745     | 125         | 18,431      | 1.90           | 7,430   |      |      | \$185,750   | 36.9%   |
| 9  | Mahala F. Atchison School                          |                           |      |           |             |             |                |         |      |      |             |         |
|    | Pervious pavements                                 | 44,125                    | 1.01 | 1.150     | 192         | 28,454      | 2.93           | 20,900  | 25   | SF   | \$522,500   | 17.0%   |
|    | Total Site Info                                    | 44,125                    | 1.01 | 1.150     | 192         | 28,454      | 2.93           | 20,900  |      |      | \$522,500   | 17.0%   |
| 10 | Monmouth Church of Christ                          |                           |      |           |             |             |                |         |      |      |             |         |
|    | Bioretention systems/rain gardens                  | 7,200                     | 0.17 | 0.188     | 31          | 4,645       | 0.48           | 1,500   | 5    | SF   | \$7,500     | 7.1%    |
|    | Pervious pavements                                 | 19,450                    | 0.45 | 0.507     | 85          | 12,544      | 1.29           | 4,825   | 25   | SF   | \$120,625   | 19.1%   |
|    | Total Site Info                                    | 26,650                    | 0.61 | 0.694     | 116         | 17,189      | 1.77           | 6,325   |      |      | \$128,125   | 26.1%   |
| 11 | Monmouth Reform Temple                             |                           |      |           |             |             |                |         |      |      |             |         |
|    | Bioretention systems/rain gardens                  | 5,250                     | 0.12 | 0.137     | 23          | 3,388       | 0.35           | 1,325   | 5    | SF   | \$6,625     | 5.5%    |
|    | Pervious pavements                                 | 6,390                     | 0.15 | 0.166     | 28          | 4,121       | 0.42           | 2,800   | 25   | SF   | \$70,000    | 6.7%    |
|    | Total Site Info                                    | 6,390                     | 0.15 | 0.303     | 51          | 7,510       | 0.77           | 4,125   |      |      | \$76,625    | 12.2%   |
| 12 | Pine Brook Fire Co. Inc                            |                           |      |           |             |             |                |         |      |      |             |         |
|    | Pervious pavements                                 | 5,840                     | 0.13 | 0.152     | 25          | 3,762       | 0.39           | 2,200   | 25   | SF   | \$55,000    | 19.0%   |
|    | Total Site Info                                    | 5,840                     | 0.13 | 0.152     | 25          | 3,762       | 0.39           | 2,200   |      |      | \$55,000    | 19.0%   |
| 13 | Tinton Falls Middle School                         |                           |      |           |             |             |                |         |      |      |             |         |
|    | Bioretention systems/rain gardens                  | 2,635                     | 0.06 | 0.069     | 11          | 1,698       | 0.18           | 685     | 5    | SF   | \$3,425     | 1.1%    |
|    | Pervious pavements                                 | 10,050                    | 0.23 | 0.262     | 44          | 6,478       | 0.67           | 3,285   | 25   | SF   | \$82,125    | 4.4%    |
|    | Total Site Info                                    | 12,685                    | 0.29 | 0.331     | 55          | 8,176       | 0.85           | 3,970   |      |      | \$85,550    | 5.5%    |

#### Summary of Proposed Green Infrastructure Practices

|    |                                                    | Potential Man | agement Area |           |             | Max Volume  | Peak Discharge |         |      |      |           |         |
|----|----------------------------------------------------|---------------|--------------|-----------|-------------|-------------|----------------|---------|------|------|-----------|---------|
|    |                                                    |               |              | Recharge  | TSS Removal | Reduction   | Reduction      | Size of | Unit |      | Total     | I.C.    |
|    | Subwatershed/Site Name/Total Site Info/GI Practice | Area          | Area         | Potential | Potential   | Potential   | Potential      | BMP     | Cost | Unit | Cost      | Treated |
|    |                                                    | (SF)          | (ac)         | (Mgal/yr) | (lbs/yr)    | (gal/storm) | (cfs)          | (SF)    | (\$) |      | (\$)      | %       |
|    | PORICY BROOK / SWIMMING RIVER SUBWATERSHED         | 39,015        | 0.90         | 1.017     | 170         | 24,721      | 2.54           | 10,000  |      |      | \$214,800 | 50.9%   |
| 14 | Emmanuel Baptist Church                            |               |              |           |             |             |                |         |      |      |           |         |
|    | Bioretention systems/rain gardens                  | 2,155         | 0.05         | 0.056     | 9           | 1,391       | 0.14           | 535     | 5    | SF   | \$2,675   | 10.3%   |
|    | Pervious pavements                                 | 4,950         | 0.11         | 0.129     | 22          | 3,194       | 0.33           | 2,235   | 25   | SF   | \$55,875  | 23.6%   |
|    | Total Site Info                                    | 7,105         | 0.16         | 0.185     | 31          | 4,585       | 0.47           | 2,770   |      |      | \$58,550  | 33.8%   |
| 15 | Northside Engine Company                           |               |              |           |             |             |                |         |      |      |           |         |
|    | Pervious pavements                                 | 4,575         | 0.11         | 0.119     | 20          | 2,947       | 0.30           | 2,045   | 25   | SF   | \$51,125  | 22.1%   |
|    | Rainwater harvesting systems                       | 925           | 0.02         | 0.024     | 4           | 598         | 0.06           | 600     | 2    | gal  | \$1,200   | 4.5%    |
|    | Total Site Info                                    | 5,500         | 0.13         | 0.143     | 24          | 3,546       | 0.36           | 2,645   |      |      | \$52,325  | 26.5%   |
| 16 | Oakwood School                                     |               |              |           |             |             |                |         |      |      |           |         |
|    | Bioretention systems/rain gardens                  | 2,110         | 0.05         | 0.055     | 9           | 920         | 0.09           | 535     | 5    | SF   | \$2,675   | 6.0%    |
|    | Pervious pavements                                 | 24,300        | 0.56         | 0.633     | 106         | 15,671      | 1.62           | 4,050   | 25   | SF   | \$101,250 | 69.6%   |
|    | Total Site Info                                    | 26,410        | 0.61         | 0.688     | 115         | 16,591      | 1.71           | 4,585   |      |      | \$103,925 | 75.7%   |