RAIN GARDEN REBATE PROGRAM

PILOT RAIN GARDEN EDUCATION WORKSHOP FOR PROPERTY OWNERS IN SOMERVILLE

August 2013

water.rutgers.edu

Assent Statement

- "This workshop is part of a research project conducted by Rutgers Cooperative Extension Water Resources Program to determine whether financial rebate incentives encourage property owners to install a rain garden on their property. Participation is voluntary and is open to all property owners in the Borough of Somerville, New Jersey. If you do not want to participate in this study please do not fill out the workshop survey.
- For further information contact Sara Mellor at 14 College Farm Road, New Brunswick, NJ 08901, 848-932-6747 or saramellor@envsci.rutgers.edu".

What happens to the rain in our watersheds?

What is stormwater?

Stormwater is the water from rain or melting snows that can become "runoff," flowing over the ground surface and returning to lakes and streams.

Pollutants Found in Runoff

SedimentBiocherSoil particles• Oxygetransported from> Leavtheir source> Orga	diment oil particles ansported from eir sourceBiochemical Oxygen Demand (BOD) • Oxygen depleting material > Leaves > Organic material				
 Toxics Pesticides Herbicides Fungicides Insecticides Metals (naturally occurring in soil, automotive emissions/ tires) 	 Nutrients Various types of materials that become dissolved and suspended in water (commonly found in fertilizer and plant material): ➢ Nitrogen (N) ➢ Phosphorus (P) 				
 Zinc Mercury Petroleum Hydrocarbons (automotive exhaust and fuel/oil) 	 Bacteria/ Pathogens Originating from: Pets Waterfowl Failing septic systems 	Thermal Stress Heated runoff, removal of streamside vegetation			
Debris Litter and illegal					

RUTGERS

dumping

Impervious surfaces

Impervious surfaces

The Impact of Development on Stormwater Runoff

more development More impervious surfaces

more stormwater runoff

Connected or Disconnected?

Rain Gardens

A rain garden is a landscaped, shallow depression that is designed to intercept, treat, and infiltrate stormwater at the source before it becomes runoff. The plants used in the rain garden are native to the region and help retain pollutants that could otherwise harm nearby waterways.

Rain Gardens

Capture: A rain garden catches runoff and holds standing water for no more than 24 to 48 hours.

> Soak: Deep-rooted plants loosen the soil, creating a sponge zone. Water soaks in and groundwater aquifers are recharged.

LESS water down the storm sewer! Cleaner lakes & streams! Filter: In the soil, microbes break down pollutants and nutrients washed in by the rain.

Courtesy of City of Maplewood, MN

PARTS OF A RAIN GARDEN

BUFFER

The buffer, or outer edge, of the rain garden slows down the flow of water, filters out sediment, and provides absorption of the pollutants in stomwater runoff. Plants located in this area of the rain garden tolerate and thrive in dry soil.

* SLOPE

The slope of the rain garden pitches downward and connects the buffer of the rain garden to the base. It creates a holding area to store runoff awaiting treatment and infiltration. Plants situated in this area should tolerate both wet and dry soils equally.

ORGANIC MATTER

Below the base is the organic matter, such as compost and a $3 \square$ layer of triple shredded hardwood mulch. The mulch acts as a filter and provides a home to microorganisms that break down pollutants.

BASE

The bottom area is the flat, deepest visible area of the rain garden and is planted with plant species that prefer wet soil. The base should be level so that the maximum amount of water can be filtered and infiltrated. It is very important that this area drains within 24 hours to avoid problems with stagnant water that can become a mosquito breeding habitat.

SAND BED

If drainage is a problem, a sand bed may be necessary to improve drainage. Adding a layer of coarse sand (also known as bank run sand or concrete sand) will increase air space and promote infiltration. It is important that sand used in the rain garden is not play box sand or mason sand as these fine sands are not coarse enough to improve soil infiltration and may impede drainage.

BERM -

The berm is a constructed mound, or bank of earth, that acts as a barrier to control, slowdown, and contain the stormwater in the rain garden. The berm can be vegetated and/ or mulched.

OVERFLOW -

The overflow (outlet) area serves as a way for stormwater to exit the rain garden during larger rain events. An overflow notch can be used as a way to direct the stormwater exiting the rain garden to a particular area surrounding the rain garden.

INLET -

The inlet is the location where stormwater enters the rain garden. Stones are often used to slow down the water flow and prevent erosion.

PLANNING YOUR RAIN GARDEN

SITE SELECTION & DESIGN

SITE SELECTION

- 1. Next to a building with a basement, rain garden should be located min. 10' from building; no basement: 2' from building
- 2. Do not place rain garden within 25' of a septic system
- 3. Do not situate rain garden in soggy places where water already ponds
- Avoid seasonably-high water tables within 2' of rain garden depth
- 5. Consider flat areas first easier digging
- 6. Avoid placing rain garden within dripline of trees
- 7. Provide adequate space for rain garden

CALL BEFORE YOU DIG

LOCATE YOUR UTILITY LINES!

Call BEFORE You Dig!

NJ One Call 1-800-272-1000

The different colors of the markout flags represent specific utilities.

- NJ One Call: 1-800-272-1000
- Free markout of underground gas, water, sewer, cable, telephone, and electric utility lines
- Call at least 3 full working days, but not more than 10 days, prior to planned installation date
- Do not place rain garden within 5' horizontally and 1' vertically from any utilities

DRAINAGE AREA: THE ROOFTOP SCENARIO

CHECK YOUR SOIL

12

Infiltration/Percolation Test

- 1. Dig a hole in the proposed rain garden site (12" deep, 4-6" wide)
- 2. Fill with water to saturate soil and then let stand until all the water has drained into the soil
- **3**. Once water has drained, refill the empty hole again with water so that the water level is about 1" from the top of the hole
- 4. Check depth of water with a ruler every hour for at least 4 hours
- 5. Calculate how many inches of water drained per hour

DETERMINING THE DEPTH OF THE RAIN GARDEN

DETERMINING THE DEPTH OF THE RAIN GARDEN

p. 25

6" DEEP RAIN GARDEN - NO SOIL AMENDMENTS

3" DEEP RAIN GARDEN - SOIL AMENDMENTS

- Depth of rain garden is dependent upon the soil texture found at the site of the rain garden
- Depth is usually 3-8 inches

DETERMINING THE SIZE OF THE RAIN GARDEN

• The size of the rain garden is dependent upon the amount of runoff entering the rain garden

Rain Garden Sizing Table

Based on New Jersey's Water Quality Design Storm (1.25" of rain over 2 hours)

Drainage Area	Size of 3" Deep Rain Garden CLAY SOIL*	Size of 6" Deep Rain Garden SILTY SOIL	Size of 8" Deep Rain Garden SANDY SOIL
500 ft ²	200 ft ²	100 ft ²	75 ft ²
750 ft ²	350 ft ²	150 ft ²	112 ft ²
1,000 ft ²	400 ft ²	200 ft ²	149 ft ²
1,500 ft ²	600 ft ²	300 ft ²	224 ft ²
2,000 ft ²	800 ft ²	400 ft ²	299 ft ²
	*SOIL TEXTURE AMENDMENTS		Ruttgers New Jesser Agikultual Pendingan Katana

р. 26

SOIL TEXTURE AMENDMENTS

• Soil texture amendments improve the rain garden's infiltration rate.

SOIL QUALITY AMENDMENTS

- Soil quality amendments improve the rain garden's growing conditions for plants
- Improve soil's nutrient capacity

REMEMBER: Your rain garden should NOT be permanently filled with water – it should drain within 24 hours.

DETERMINING THE INLET AND OVERFLOW

- Stormwater runoff enters the rain garden from an inlet
- Stormwater exits through the overflow

OUTLET (plastic catch basin)

PREVENTING EROSION

- Slope no greater than 3:1
- Slow down velocity of water flowing through rain garden
 - Add rocks to inlet area

DETERMINING MULCH QUANTITY

- Allow for a 3" depth mulch (triple-shredded hardwood with no dye) to be spread throughout the entire rain garden
 - Every 100 square feet of rain garden needs 1 cubic yards (3" depth)

RAIN GARDEN DESIGN

SHAPING YOUR RAIN GARDEN

- Use a garden hose or rope to outline the desired shape of your rain garden on the ground
- Many rain gardens are in the shape of a circle or kidney bean, but your rain garden can take on whatever shape you prefer

Butterfly Habitat Rain Garden: Planting Plan

May

lune

luly

August

SELECTING PLANTS FOR YOUR RAIN GARDEN

- The success of your rain garden depends on selecting the right plants for the right place
- Plant your rain garden with plants adapted for your specific site
- Native plants can thrive without a lot of care, extra water, fertilizer, or pesticides
- Native plants are tolerant to dry and wet conditions

PLANT SELECTION

Select species based upon the following qualities:

- Plant size
- Moisture tolerances
- Sun preferences
- Plant aggressiveness
- Salt tolerance
- Habitat creation

PLANTING DESIGN TIPS

- Plants that prefer wet conditions should be planted in the deepest part (the base) of the rain garden
- Create depth in the rain garden by placing large and tall plants in the back, smaller plants in the front
- Plant masses of the same species together in odd numbers
- Incorporate plants that have visual interest in the fall and winter
- Native plants provide habitat to animals and require less watering

THE FUN PART! INSTALLING YOUR RAIN GARDEN

Remove existing grass with a shovel or

machinery

STEP TWO

 Excavate to design depth based on necessary storage and soil amendment requirements

STEP THREE Add soil amendments, if necessary

- Combine amendments with existing soil using shovels or rototiller
- Loosen and prepare soil for grading and planting

STEP FOUR

• Prepare the berm, if necessary

STEP FIVE

Prepare the overflow

The buffer, or outer edge, of the rain garden slows down the flow of water, filters out sediment, and provides absorption of the pollutants in stormwater runoff. Plants located in this area of the rain garden tolerate and thrive in dry soil.

* SLOPE

The slope of the rain garden pitches downward and connects the buffer of the rain garden to the base. It creates a holding area to store runoff awaiting treatment and infiltration. Plants situated in this area should tolerate both wet and dry soils equally.

ORGANIC MATTER

Below the base is the organic matter, such as compost and a 3 □ layer of triple shredded hardwood mulch. The mulch acts as a filter and provides a home to microorganisms that break down pollutants.

area of the rain garden and is planted

with plant species that prefer wet soil. The base should be level so that the maximum amount of water can be filtered and infiltrated. It is very important that this area drains within 24 hours to avoid problems with stagnant water that can become a mosquito breeding habitat.

The bottom area is the flat, deepest visible

SAND BED

BASE

If drainage is a problem, a sand bed may be necessary to improve drainage. Adding a layer of coarse sand (also known as bank run sand or concrete sand) will increase air space and promote infiltration. It is important that sand used in the rain garden is not play box sand or mason sand as these fine sands are not coarse enough to improve soil infiltration and may impede drainage.

BERM -

The berm is a constructed mound, or bank of earth, that acts as a barrier to control. slowdown, and contain the stormwater in the rain garden. The berm can be vegetated and/ or mulched.

OVERFLOW -

The overflow (outlet) area serves as a way for stormwater to exit the rain garden during larger rain events. An overflow notch can be used as a way to direct the stormwater exiting the rain garden to a particular area surrounding the rain garden.

PLANTING SOIL LAYER This layer is usually native soil. It

is best to conduct a soil test of the area checking the nutrient levels and pH to ensure adequate plant growth.

> INLET . The inlet is the location where stormwater enters the rain garden. Stones are often used to slow down the water flow and prevent erosion.

> > 0

• Level the rain garden base

STEP SEVEN

• Plant native species

• Apply mulch

- Allow for a 3" depth mulch (triple-shredded hardwood with no dye) to be spread throughout the entire rain garden
- For every 100 square feet of rain garden, you will need about 1 cubic yard of mulch (3" depth)

STEP NINE

• Water Plants

STEP TENAppreciate a job well done

INSPECTION AND MAINTENANCE

MAINTAINING YOUR RAIN GARDEN

MAINTENANCE MEASURES

WEEKLY TASKS:

- 1. Watering
- 2. Weeding
- 3. Inspecting

ANNUAL TASKS:

- 1. Mulching
- 2. Pruning
- 3. Re-planting
- 4. Removing sediment
- 5. Soil Testing
- 6. Harvesting Plants
- 7. Cleaning of Gutters
- 8. Replacing materials (stone, landscape fabric)

 For detailed maintenance practices go to the Rain Garden Rebate Program <u>website</u> to view a Maintenance PowerPoint Presentation

RAIN GARDEN PLANTING DESIGN

DESIGN AESTHETICS

- Formal or traditional design
 - Shrub bed
 - Perennial garden
 - Hedges
- Naturalized planting & design
 - Butterfly garden
 - Meadow (warm season grasses & wildflowers)
 - Buffer plantings

SITE CONSTRAINTS

- Sun vs. shade
- Exposure/wind
- Soil characteristics
- Hydrologic conditions
- Road salts
- Vehicle/pedestrian traffic

PLANTS IN THE RIGHT PLACE...

Courtesy of Pinelands Nursery & Supply

PLANTING DESIGN: Wet + Dry Conditions

SELECTING PLANT SPECIES

- Mature plant size
 - Proximity to buildings and utility lines
 - Pruning and shaping
- Seasonal interest
 - Flowers
 - Fall color
 - Winter character
- Beneficial wildlife
 - Flowers for butterflies
 - Fruits for song birds

GRASSES & GROUND COVERS

FAC

BUFFER

Broomsedge

DRY

- Bearberry
- Panic grass
- Switchgrass
- Little bluestem
- Indiangrass

BASE

FACU

- Big bluestem
- Virginia wild-rye
- Switchgrass
- Wool grass

SLOPE

WFT

- Bluejoint grass
- Sedges

OBL

FACW

- Fowl mannagrass
- Softrush

GRASSES & GROUND COVERS

Woolgrass (Scirpus cyperinus) - FACW+

Switchgrass

(Panicum virgatum) - FAC

Tussock Sedge (Carex stricta) - OBL

Little Bluestem (Schizachyrium scoparium) - FACU

WILDFLOWERS & FERNS

FAC

BUFFER

DRY

- Butterfly milkweed
- Wild indigo
- Purple coneflower
- Beebalm
- Black-eyed susan

BASE

FACU

- New England aster
- New York aster
- Columbine
- Coreopsis
- Joe-pye weed
- Blazing star
- Sensitive fern
- Cinnamon fern
- Ironweed

SLOPE

> WET

OBL

FACW

- Swamp milkweed
- Marsh marigold
- Turtlehead
- Boneset
- Rosemallow/hibiscus
- Blueflag iris
- Cardinal flower
- Blue lobelia

WILDFLOWERS & FERNS

Joe-Pye Weed (Eupatorium perfoliatum) - FAC (Rudbeckia hirta) - FACU-

Black-eyed Susan

New England Aster (Aster novae-angliae) - FACW

TREES & SHRUBS

BUFFER

DRY

- Hackberry
- Red Bud
- Pepperbush
- American Holly
- Bayberry
- Witchhazel
- White Oak
- Red Oak
- Arrowwood
 Viburnum

BASE

FACU

- Red Maple
- Service Berry
- River Birch
- Silky Dogwood
- Red-twig Dogwood
- Inkberry Holly
- Winterberry
- Sweetbay Magnolia

SLOPE

• River Birch

WFT

OBL

FACW

- Buttonbush
- Silky Dogwood
- Green Ash
- Swamp White Oak
- Pin Oak
- Cranberrybush
 Viburnum

TREES & SHRUBS

Summersweet Clethra alnifolia) - FAC+

River Birch (Betula nigra) - FACW Winterberry Holly (Ilex verticillata) - FACW+

Inkberry Holly (Ilex glabra) - FACW-

PLANTING DESIGN

Considerations:

- Native Species
- Tolerance of both wet + dry conditions
- Mature size of plants
- Aesthetics (layering, clustering, unity)
- Value for wildlife

PLANTING DESIGN: Native Plants

NATIVE PLANTS:

- Provide habitat areas
- Adapted to local conditions (soil, temperature, weather)
- Attract other natives (migratory birds, beneficial insects and butterflies)
- Reduce the need for irrigation
- Reduce the need for maintenance
- Reduce the use of fertilizer
- Reduce the use of pesticides
- Absorb water more efficiently than turf-style grasses

PLANTING DESIGN: Mature Size of Plants

At time of installation Springfield Township Municipal Annex Building Springfield, NJ

First growing season

Second growing season

Third growing season

Fourth growing season

Take Home Handouts

water.rutgers.edu

Prior to technical support session, please email this form along with your photos to Sara at saramellor@envsci.rutgers.edu

WHAT AMOUNT OF TIME DO YOU HAVE TO PUT TOWARDS MAINTAINING YOUR GARDEN?

LOW (0-2 hours per month) MEDIUM (3-5 hours per month) HIGH (6+ hours per month)

HOW BIG DO YOU WANT YOUR RAIN GARDEN TO BE?

____ FEET LONG X

____ FEET WIDE

WHAT ARE THE GARDEN SITE'S CONDITIONS?

SUN	Full shade	Partial shade	Sunny
SOIL	Sandy soil	Loam soil	Clay soil
DRAINAGE	Well drained	Poorly drained	Compacted
SLOPE	Flat	Slight	Steep

UTGERS New Jersey Agricultural Experiment Station

Sand Particle size should be estimated (very fine, fine, medium, coarse) for these textures. Individual grains of <u>very fine</u> sand are not visible without magnification and there is a gritty feeling to a very small sample ground between the teeth. Some <u>fine sand</u> particles may be just visible. <u>Medium</u> sand particles are easily visible. Examples of sand size descriptions where one size is predominant are; very fine sand, fine sandy loam, loamy coarse sand.

** Cay percentage range.

Modified from: Thien, Steven J., Kansas state University, 1979 Jour. Agronomy education.

CHECK YOUR SOIL

12

Infiltration/Percolation Test

- 1. Dig a hole in the proposed rain garden site (12" deep, 4-6" wide)
- 2. Fill with water to saturate soil and then let stand until all the water has drained into the soil
- **3**. Once water has drained, refill the empty hole again with water so that the water level is about 1" from the top of the hole
- 4. Check depth of water with a ruler every hour for at least 4 hours
- 5. Calculate how many inches of water drained per hour

p. 22
HOW MUCH OF YOUR PROPERTY IS MADE UP OF IMPERVIOUS SURFACES?

SQ. FT

WHAT IS THE DRAINAGE AREA OF YOUR PROPOSED RAIN GARDEN SITE?

DO YOU HAVE A BASEMENT?

LANDSCAPE DESIGN PLAN

Draw a plan of your Rain Garden location, including the maximum area you are willing to dedicate to the garden. Please also attach a photo or two of the proposed area and mark on the plan where each photo was taken and the view it shows. Consider and include these details in your sketch on the graph paper below.

- Activites in your yard (i.e. kids playing, grilling, washing your car):
- Irrigation zones if applicable (i.e. sprinkler systems, drip irrigation):
- Sun/shade, wet/dry, steep slope, drainage patterns:
- Color preference for plants: _
- Plant height restrictions:
- Block and hatch existing plants you want to keep

Handout Guidance

Impervious Surfaces:

Rooftop(s)

- Driveway(s)
- Walkway(s)
- Deck(s)
- Patio(s)
- Shed(s)

Drainage Area:

