

Why are we here?

The approval of a developer's stormwater management plans lies solely with the municipality.

Municipalities are required under their Municipal Stormwater General Permit to enforce statewide basic requirements for post-construction stormwater management in new development and redevelopment.

What happens to the rain?

What is stormwater?

Stormwater is the water from rain or melting snows that can become "runoff," flowing over the ground surface and returning to lakes and streams.

The Natural Hydrologic Cycle

The Impact of Development on Stormwater Runoff

More development

→ More impervious surfaces

RUTGERS

What is impervious cover?

Roads, rooftops, parking lots, and other hard surfaces that do not allow stormwater to soak into the ground.

- provides a surface for accumulation of pollutants
- leads to increased polluted runoff and flooding
- inhibits recharge of groundwater

Increases in Impervious Cover Leads to:

- More stormwater runoff volume
- Higher peak stormwater runoff rates
- Increased nonpoint source pollution
- Less groundwater recharge

The sub/urban Hydrologic Cycle

The Science of Stormwater

History of Stormwater Management

1st Attempt at Stormwater Management

Capture all runoff, pipe it, and send it directly to the river . . .prior to mid 1970's

2nd Iteration of Stormwater Management

Capture runoff, detain it, release it slowly to the river...mid 1970's to 2004

- Detain peak flow during large storm events
- Reduce downstream flooding during major storms
- Use concrete low flow channels to minimize erosion, reduce standing water, quickly discharge low flows
- Does not manage runoff from smaller storms
- Directly discharges stormwater runoff to nearby stream, waterway, or municipal storm sewer system (at a controlled/managed rate)

3rd Generation of Stormwater Management

- Reduce peak flows...and....
- Maintain infiltration and groundwater recharge
- Reduce pollution discharged to local waterways

How NJ's regulations change the way we manage stormwater

Video by the American Society of Landscape Architects

Stormwater Management Key Objectives

- Use nonstructural management strategies
- Protect communities from increases in stormwater volume and peak flows as a result of new development
- Maintain groundwater recharge
- Protect waterways from pollution carried in stormwater runoff

New Jersey Stormwater Management Rules

- Rules apply to any "Major Development" defined as a project disturbing more than 1 acre or increasing impervious surfaces by ¼ acre or more
- Design and Performance Standards established in NJAC 7:8-5, for:
 - Nonstructural Stormwater Management Strategies
 - Stormwater Quantity
 - Groundwater Recharge
 - Stormwater Quality
 - Stormwater Maintenance Plan

Nonstructural Strategies

- Plan the project using Low Impact Development (LID) Principles
- Collect, infiltrate and where possible reuse stormwater near its source
- Capture runoff from small storm events in vegetated systems to protect water quality and promote recharge
- Minimize and disconnect impervious surfaces

Water Quantity Performance Standards

Water Quantity

 Demonstrate that post-development 2, 10, and 100-year storm event hydrographs do not exceed pre-development hydrographs

or

 Demonstrate that hydrograph peaks will not increase and that increase in volume or change in timing won't increase flood damage downstream

or

- Design BMPs so that 2, 10, and 100-year pre-development hydrographs are reduced to 50%, 75%, and 80%, respectively
 - 2-year rainfall (3.3 inches)
 - 10-year rainfall (5.0 inches)
 - 100-year rainfall (8.3 inches)

Groundwater Recharge Performance Standards

Groundwater Recharge

 Maintain 100% of average annual groundwater recharge volume

or

 Infiltrate increase in the post development runoff volume for the 2-year storm

Water Quality Performance Standards

Water Quality

- Install BMPs to reduce at least 80% of total suspended solids (TSS) loads
- Install BMPs to provide nutrient removal to maximum extent feasible

ВМР	TSS Removal Rate
Bioretention	90%
Constructed Wetlands	90%
Forested Buffers	70%
Extended Detention Basin	40-60%
Infiltration Structure	80%
Sand Filter	80%
Vegetative Filter Strip	50%
Wet Pond	60-90%

SOURCE: NJ Stormwater Management Rules and BMP Manual

NJ Stormwater Guidance

Tier A

Municipal Stormwater Guidance Document NJPDES General Permit No NJ0141852

New Jersey

Stormwater

Best Management Practices Manual

For more information, visit: www.njstormwater.org

The approval of a developer's stormwater management plans lies solely with the municipality.

As municipal officials...what is NOT your responsibility...

- You do <u>NOT</u> need to know how to meet required nonstructural management strategies
- You do <u>NOT</u> need to know how to design or use BMPs
- You do <u>NOT</u> need to know how to maintain BMPs

The Role of Municipal Officials...

- You need to know how to ask the right questions of the professionals and the applicant
- Clearly understand that all applicants have to satisfy standards for:
 - Nonstructural Stormwater Management Strategies
 - Stormwater Quantity
 - Groundwater Recharge
 - Stormwater Quality
 - Stormwater Maintenance Plan
- Have confidence that your questions have been adequately answered by the professionals and the applicant so that approval can be given

Who approves a developer's stormwater management plan?

The approval of a developer's stormwater management plans lies **solely** with the municipality.

A permit from NJDEP is **not** an approval of the applicant stormwater management plan.

ONLY the municipality can approve a developers stormwater management plan.

Bottom line - what does the developer really need to do?

- 1. Maintain groundwater recharge on the site
- 2. Reduce sediment and nutrient runoff from the site
- 3. Reduce the peak stormwater runoff rates from the site

How should a developer do this?

1st Use Nonstructural Strategies to achieve 1, 2, and 3

Nine Nonstructural Strategies

- 1. Protect areas that provide water quality benefits or areas particularly susceptible to erosion and sediment loss
- 2. Minimize impervious surfaces and break up or disconnect the flow of runoff over impervious surfaces
- 3. Maximize the protection of natural drainage features and vegetation
- 4. Minimize the decrease in the "time of concentration" from preconstruction to post-construction
- 5. Minimize land disturbance including clearing and grading
- 6. Minimize soil compaction
- 7. Provide low-maintenance landscaping that encourages retention and planting of native vegetation and minimizes the use of lawns, fertilizers and pesticides
- 8. Provide vegetated open-channel conveyance systems discharging into and through stable vegetated areas
- 9. Provide other source controls to prevent or minimize the use or exposure of pollutants at the site to prevent or minimize the release of those pollutants into stormwater runoff

9 Strategies to 4 Categories

1. Vegetation and Landscaping

- ✓ Preservation of natural areas (forested areas, riparian corridors, high recharge areas)
- ✓ Native ground cover (limit turf grass areas)
- Vegetative filters and buffers (protect them or plant new ones)

2. Minimizing Site Disturbance

- ✓ Fit the development into the terrain
- Minimize clearing and grading
- ✓ Minimizing soil compaction
- Build on low permeability soil areas

3. Impervious Area Management

- Minimum street widths and sidewalks
- ✓ Limit parking and driveway areas
- Use pervious paving materials
- Disconnect impervious surfaces from draining directly to waterways
- Vegetated roofs

4. Time of Concentration Modifications (slow down runoff)

- ✓ Surface roughness changes
- ✓ Slope reduction
- Vegetated conveyances

#1 Protect areas that provide water quality benefits or areas particularly susceptible to erosion and sediment loss

#2: Minimize impervious surfaces and break up or disconnect the flow of runoff over impervious surfaces

Disconnected Impervious Surfaces

For 1.25 inch storm, 3,811 cubic feet of runoff = **28,500 gallons**

For 1.25 inch storm, 581 cubic feet of runoff = 4,360 gallons

Total drainage area = 3 acres 1 acre directly 2 acres connected pervious cover impervious cover Runoff Direction Stormwater Inlet

	Volume		
Design Storm	Connected (gallons)	Disconnected (gallons)	Percent Difference
1.25 inches (water quality storm)	28,500	4,360	85%

Impervious area is now <u>"disconnected"</u> from flowing directly into the storm sewer system

#5 Minimize land disturbance including clearing and grading

Preserving Natural Lands

Not Preserving Natural Lands

#7 Provide low-maintenance landscaping that encourages retention and planting of native vegetation and minimizes the use of lawns, fertilizers and pesticides

#8 Provide vegetated openchannel conveyance systems discharging into and through stable vegetated areas

No.	Nonstructural Strategy	Yes	No
1.	Protect areas that provide water quality benefits or areas particularly susceptible to erosion and sediment loss		
2.	Minimize impervious surfaces and break up or disconnect the flow of runoff over impervious surfaces		
3.	Maximize the protection of natural drainage features and vegetation		
4.	Minimize the decrease in the pre-construction time of concentration		
5.	Minimize land disturbance including clearing and grading		
6.	Minimize soil compaction		
7.	Provide low maintenance landscaping that encourages retention and planting of native vegetation and minimizes the use of lawns, fertilizers, and pesticides		
8.	Provide vegetated open-channel conveyance systems discharge into and through stable vegetated areas		
9.	Provide preventative source controls		

Explain why any one of these is "NO." Engineering, environmental and/or safety reasons are only acceptable.

Bottom line - what does the developer really need to do?

- 1. Maintain groundwater recharge on the site
- Reduce sediment and nutrients runoff from the site
- 3. Reduce the peak stormwater runoff from the site

How should a developer do this?

2nd Focus on incorporating systems that address water quality and groundwater recharge

Nonpoint Source Pollution (NPS)

- NPS is pollution associated with stormwater runoff
- NPS occurs when runoff collects pollutants on its way to a collection system or water body
- NPS pollution cannot be traced to a direct discharge point such as a wastewater treatment facility

Examples of NPS

- Oil and grease from cars
- Fertilizers
- Animal waste
- Grass clippings
- Septic systems

- Sewage leaks
- Household cleaning products
- Litter
- Agriculture
- Sediment

Impact of NPS

- Fish and wildlife
- Recreational water activities
- Commercial fishing
- Tourism
- Drinking water quality

Groundwater Recharge Requires...

- Healthy soils
 - Permeability
 - Hydraulic conductivity
- Vertical separation from seasonable high water table or groundwater table
- Suitable distance from foundations, basements and septic systems

Groundwater Recharge...

Manufactured Treatment Devices (off-line devices)

http://www.njstormwater.org/treatment.html

Table 2: TSS Removal Rates for BMPs

Best Management Practice	TSS Percent
Removal Rate	
Bioretention Systems	90
Constructed Stormwater Wetland	90
Extended Detention Basin	40-60
Infiltration Structure	80
Sand Filter	80
Vegetative Filter Strip	60-80
Wet Pond	50-90
Manufactured Treatment Device	See N.J.A.C.
	7:8-5.7(d)

Bottom line - what does the developer really need to do?

- 1. Maintain groundwater recharge on the site
- 2. Reduce sediment and nutrients runoff from the site
- 3. Reduce the peak stormwater runoff from the site

How should a developer do this?

3rd Design systems that reduce peak stormwater runoff rates and meet water quantity requirements.

WATER QUANTITY (NJAC 7.8-5.4(a)3)

1. Has the applicant calculated stormwater runoff using NJDEP approved assumptions and factors?

These assumptions and factors can be found in the regulations under section NJAC 7:8-5.6. The Township Engineer or Review Engineer should be able to verify that the calculations were done correctly.

If yes, go to Question #2. If no, application is incomplete at this time.

WATER QUANTITY (NJAC 7.8-5.4(a)3)

2. Has the applicant calculated the pre and post-construction peak runoff for the 2-year, 10-year, and 100-year storm events?

If yes, has the applicant demonstrated compliance with ONE of the following requirements?

- a. Has the applicant submitted adequate hydrologic and hydraulic analyses demonstrating the post-construction runoff hydrographs (2-yr, 10-yr, and 100-yr) do not exceed the corresponding pre-construction hydrographs?
- b. Has the applicant submitted adequate hydrologic and hydraulic analyses demonstrating that there is no increase as compared to the pre-construction condition in the peak runoff rates leaving the site (2-yr, 10-yr, and 100-yr) and that the increase volume or change in timing will not increase flood damage at or downstream of the project site.
- c. Has the applicant submitted adequate hydrologic and hydraulic analyses demonstrating that the post-construction peak runoff rates (2-yr, 10-yr, and 100-yr) are 50%, 75%, and 80% respectively of the pre-construction runoff rates.

If the applicant has NOT demonstrated compliance with one of the requirements outlined above, the application is incomplete at this time.

Summary

The best way for an applicant to meet the NJ Stormwater Management regulations is to:

- 1. Incorporate *nonstructural* strategies
- 2. Address water *quality* and groundwater *recharge* requirements
- 3. Ensure that proposed designs meet water *quantity* requirements

One Last Question:

Who approves the developer's stormwater management plan?

YOU DO!

How do we integrate these tools into the review process?

- All questions should be publicly available for all applicants, review engineers, and residents
- Members of the planning and/or zoning boards and/or environmental commission should <u>be prepared to ask these questions</u> of the Township's review engineer and applicant
- Understand that these questions outline the <u>minimum requirements</u> as defined in the NJ Stormwater Management Rules

E-learning Tool Available Online

- A <u>FREE</u> interactive Elearning tool is available online http://water.rutgers.edu/E-learning.html
- The tool is intended to help you understand if a developer is in compliance with the NJ Stormwater Management Regulations so you can be comfortable in approving or rejecting the developer's plan

