

Impervious Cover Assessment and Reduction Action Plan for Evesham, New Jersey

January 30, 2018

Christopher C. Obropta, Ph.D., P.E.

obropta@envsci.rutgers.edu

www.water.rutgers.edu

Rutgers Cooperative Extension

Rutgers Cooperative Extension (RCE) helps the diverse population of New Jersey adapt to a rapidly changing society and improves their lives through an educational process that uses science-based knowledge.

RUTGERS

Water Resources Program

WATER RESOURCES PROGRAM

BESEARCH

NO

Integrating research, education, and extension

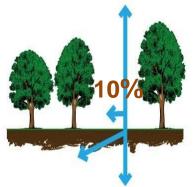
Delivering solutions based on sound science

Working with various members of the community, including municipalities, NGOs, and individual residents

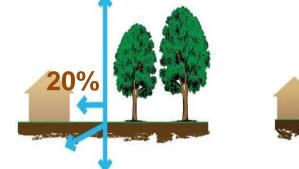
EXTENSION

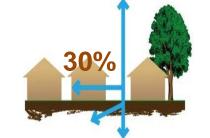
Solving water resources issues in New Jersey

The Water Resources Program is one of many specialty programs under Rutgers Cooperative Extension.


Our Mission is to identify and address community water resources issues using sustainable and practical science-based solutions.

The Water Resources Program serves all of New Jersey, working closely with the County Extension Offices.



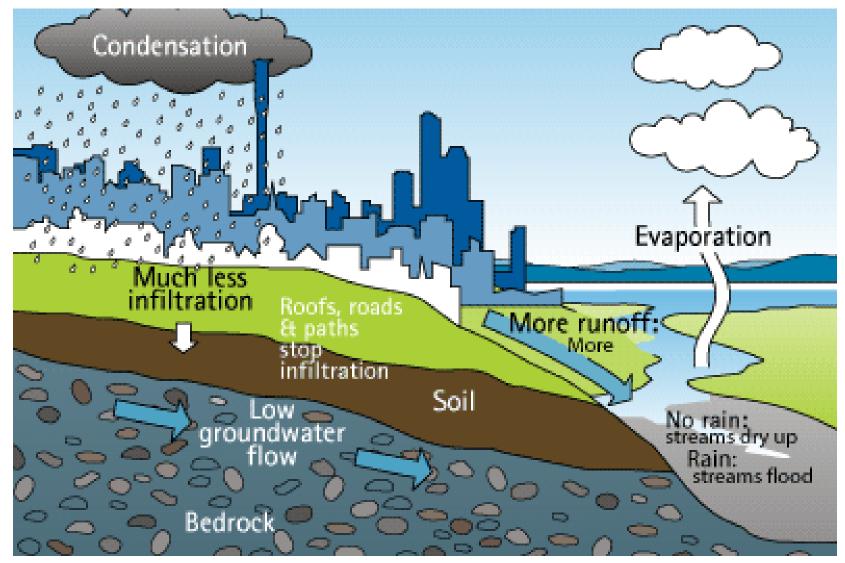

Water Resources Program

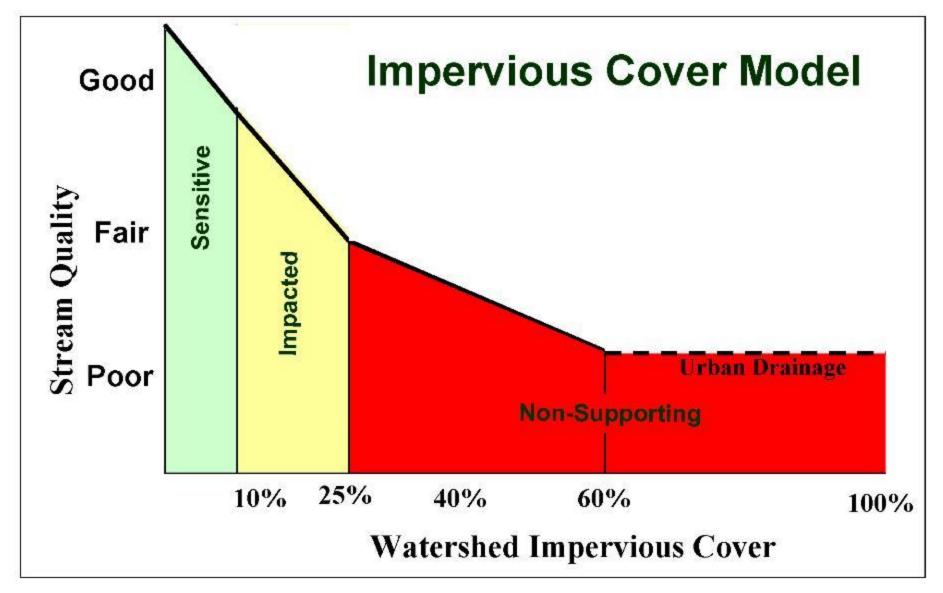
The Impact of Development on Stormwater Runoff

RUTGERS

More development

More impervious surfaces


More stormwater runoff


Water Resources Program

The <u>Urban</u> Hydrologic Cycle

RUTGERS

Original ICM developed based on 200+ reports and papers

Reference: Tom Schueler and Lisa Fraley-McNeal, Symposium on Urbanization and Stream Ecology, May 23 and 24, 2008

Green Infrastructure

...an approach to stormwater management that is cost-effective, sustainable, and environmentally friendly Green Infrastructure projects:

- capture
- filter
- absorb
- reuse

stormwater to maintain or mimic natural systems and treat runoff as a resource

Green Infrastructure includes:

- green roofs
- rainwater harvesting
- tree filter/planter boxes
- rain gardens/bioretention systems
- permeable pavements
- vegetated swales or bioswales
- natural retention basins
- trees & urban forestry
- green streets

Parker Urban Greenscapes

It's all about managing impervious surfaces !

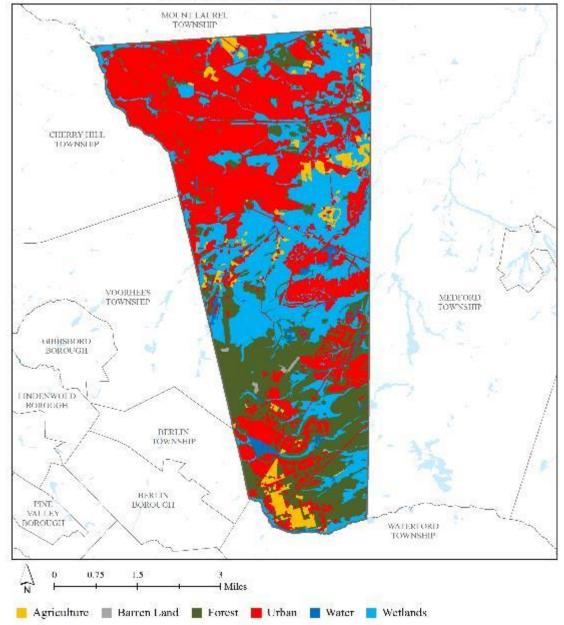
Eliminate it !

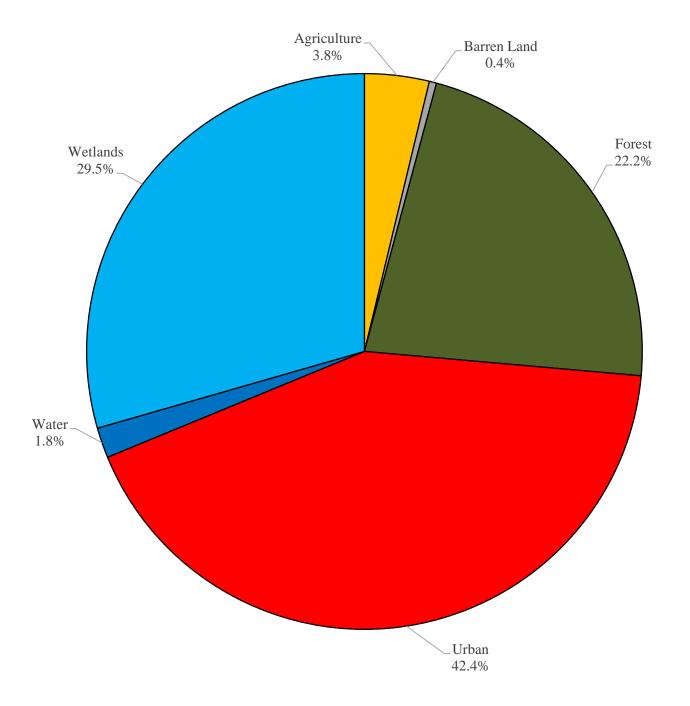
Change it !

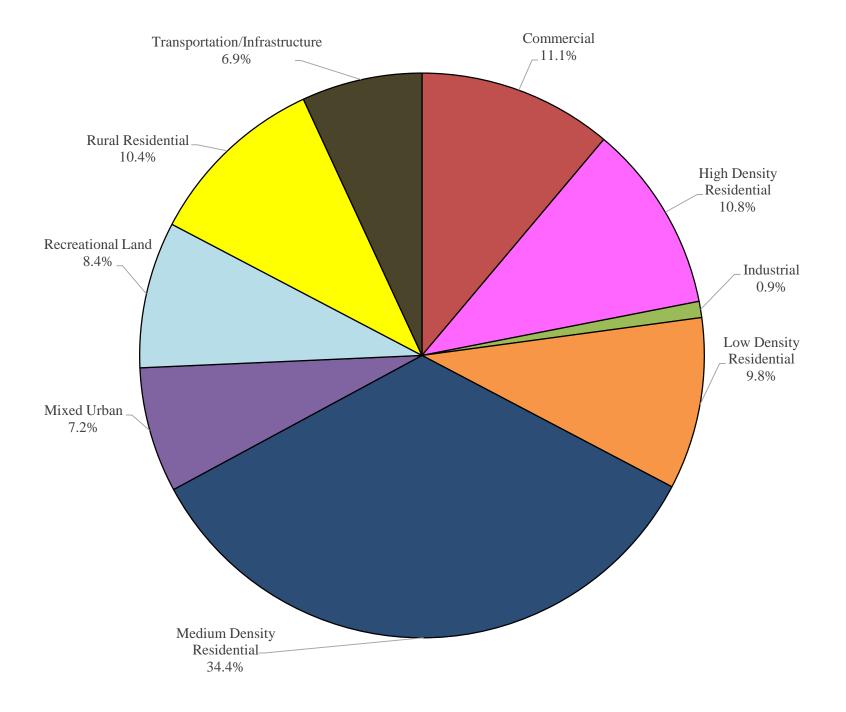
Disconnect it !

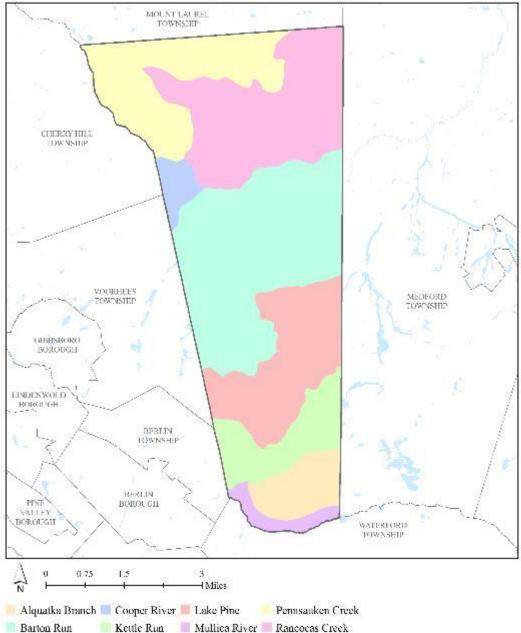
Reuse it !

Impervious Cover Assessment


Impervious Cover Assessment


RUTGERS


- Analysis completed by watershed and by municipality
- Use 2012 Land Use data to determine impervious cover
- Calculate runoff volumes for water quality, 2, 10 and 100 year design storm and annual rainfall
- Contain three concept designs



Subwatersheds of Evesham Township

Subwatersheds of Evesham Township

Watershed	Total Area (ac)	Impervious Cover (ac)	%
Alquatka Branch	1,026.8	14.3	1.4%
Barton Run	5,669.5	515.6	9.3%
Cooper River	415.0	184.5	45.0%
Kettle Run	1,509.0	99.5	6.9%
Lake Pine	2,857.2	180.9	6.4%
Mullica River	383.2	16.8	4.5%
Pennsauken Creek	2,951.5	1,025.8	35.1%
Rancocas Creek	`4,116.9	846.9	20.7%
Total	18,929.1	2,884.3	15.5%

Subwatershed	NJ Water Quality Storm (MGal)	Annual Rainfall of 44'' (MGal)	2-Year Design Storm (3.3") (MGal)	10-Year Design Storm (4.9") (MGal)	100-Year Design Storm (7.8") (MGal)
Alquatka Branch	0.5	17.0	1.4	2.0	3.2
Barton Run	17.5	616.0	49.0	72.8	116.2
Cooper River	6.3	220.4	17.5	26.1	41.6
Kettle Run	3.4	118.9	9.5	14.0	22.4
Lake Pine	6.1	216.1	17.2	25.5	40.8
Mullica River	0.6	20.1	1.6	2.4	3.8
Pennsauken Creek	34.8	1,225.5	97.5	144.8	231.2
Rancocas Creek	28.7	1,011.8	80.5	119.6	190.9
Total	97.9	3,445.9	274.1	407.2	650.0

WE LOOK HERE FIRST:

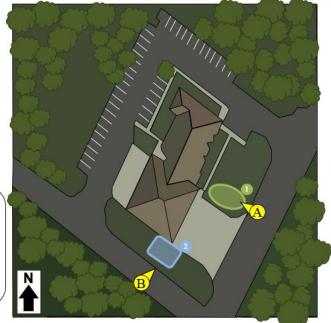
✓ Schools

RUTGERS

- ✓House of Worship
- ✓Libraries
- ✓ Municipal Building
- ✓ Public Works
- ✓ Firehouses
- ✓Post Offices
- ✓Elks or Moose Lodge
- ✓ Parks/ Recreational Fields

- 20 to 40 sites are entered into a PowerPoint
- Site visits are conducted

Evesham Township Impervious Cover Assessment *Kettle Run Fire Rescue, 498 Hopewell Road*


PROJECT LOCATION:

BIORETENTION SYSTEM: A rain garden can be used to capture, treat, and infiltrate runoff from the roof of the building. These systems can easily be incorporated into existing landscapes, improving aesthetics and creating wildlife habitat while managing stormwater.

RAINWATER HARVESTING SYSTEM: A cistern can capture stormwater that drains from the building's rooftop. Connecting the downspouts to the cistern will allow the stormwater to be harvested and used for cleaning fire trucks.

SITE PLAN:

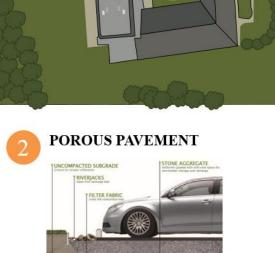
RUTGERS

RAINWATER HARVESTING SYSTEM

B

Evesham Township Impervious Cover Assessment Marlton Elementary School, 190 Tomlinson Mill Road

PROJECT LOCATION:


BIORETENTION SYSTEM: On this property rain gardens can be used to reduce sediment and nutrient loading to the local waterway and increase groundwater recharge. There are opportunities to install rain gardens near entrances to the school.

POROUS PAVEMENT: Porous pavement promotes groundwater recharge and filters stormwater. The parking spots close to the school can be retrofitted with porous pavement.

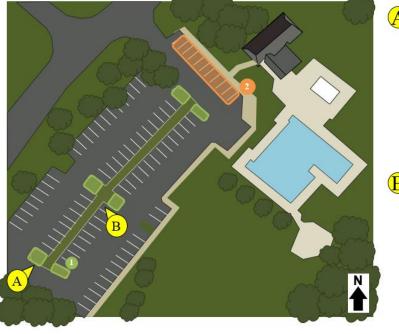
SITE PLAN:

ENEABLE PAVENENT DIACRAM

D


RUTGERS

Evesham Township Impervious Cover Assessment Barton Run Swim Club, 100 Lakeside Drive

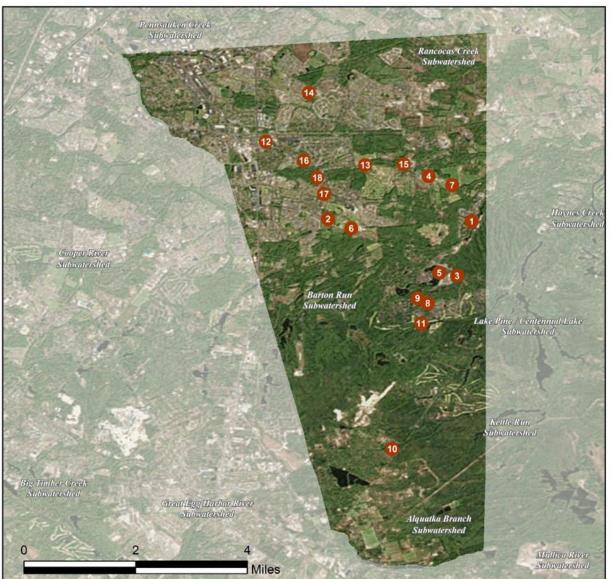

PROJECT LOCATION:

BIORETENTION SYSTEM: On this property rain gardens can be used to reduce sediment and nutrient loading on local waterways by retrofitting the parking islands. The rain gardens will capture, treat, and infiltrate runoff from the parking lot.

POROUS PAVEMENT: Parking spaces close to the pool house can be converted to porous asphalt. Porous pavement promotes groundwater recharge and filters stormwater.

SITE PLAN:





Impervious Cover Reduction Action Plan

SITES WITHIN THE BARTON RUN SUBWATERSHED:

EVESHAM TOWNSHIP: GREEN INFRASTRUCTURE SITES

- 1. Barton Run Swim Club
- 2. Cherokee High School
- 3. Evesham Fire/Rescue 223/227
- 4. Evesham Township Municipal Court
- 5. King's Grant Community Room
- 6. Marlton Elementary School
- 7. Memorial Park
- 8. Richard L. Rice Elementary School
- 9. Villa Royal Association

SITES WITHIN THE LAKE PINE SUBWATERSHED:

- 10. Kettle Run Fire/Rescue 225/228
- 11. Links Golf Course

SITES WITHIN THE PENNSAUKEN CREEK SUBWATERSHED:

12. Evesham Fire/Rescue 221/229

SITES WITHIN THE RANCOCAS CREEK SUBWATERSHED:

- 13. Christ Presbyterian Church
- 14. Frances S. DeMasi Elementary School
- 15. Marlton Assembly of God
- 16. Marlton Post Office
- 17. Robert B. Jaggard Elementary School
- 18. St. Joan of Arc Parish and School

BARTON RUN SWIM CLUB

Subwatershed:	Barton Run
Site Area:	169,977 sq. ft.
Address:	100 Lakeside Drive Marlton, NJ 08053
Block and Lot:	Block 44.3, Lot 16

Stormwater is currently directed to an existing catch basin. Installing rain gardens in the parking lot islands can capture, treat, and infiltrate stormwater runoff from the parking lot. Replacing parking spaces with porous pavement can capture and infiltrate runoff from the other side of the parking lot. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervi	Impervious Cover		ting Loads f vious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44"	
30	51,770	2.5	26.1	237.7	0.040	1.42	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.288	48	21,834	0.82	2,765	\$13,825
Pervious pavement	0.352	59	26,651	1.00	2,410	\$60,250

GREEN INFRASTRUCTURE RECOMMENDATIONS

Barton Run Swim Club

- bioretention system
- pervious pavement
- drainage area

п

- **[]** property line
 - 2015 Aerial: NJOIT, OGIS

MARLTON ELEMENTARY SCHOOL

Subwatershed:	Barton Run
Site Area:	2,037,458 sq. ft.
Address:	190 Tomlinson Mill Road Evesham, NJ 08053
Block and Lot:	Block 39, Lot 1.01, 1.02

Stormwater is currently directed to existing catch basins. Parking spots by the north and west buildings can be replaced with porous asphalt to capture and infiltrate stormwater runoff from the parking lot. Rain gardens adjacent to the building can capture, treat, and infiltrate roof runoff before it reaches the existing catch basin. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Imperv	ious Cover		sting Loads vious Cover		Runoff Volume from Im	pervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm For an Annual Rainfall o	
26	526,875	25.4	266.1	2,419.1	0.411	14.45

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.516	86	39,068	1.47	4,950	\$24,750
Pervious pavement	0.651	109	49,331	1.85	4,465	\$111,625

GREEN INFRASTRUCTURE RECOMMENDATIONS

Marlton Elementary School

- bioretention system
- pervious pavement
- drainage area

- [] property line
- 2015 Aerial: NJOIT, OGIS

```
0 50' 100'
```

KETTLE RUN FIRE/RESCUE 225/228

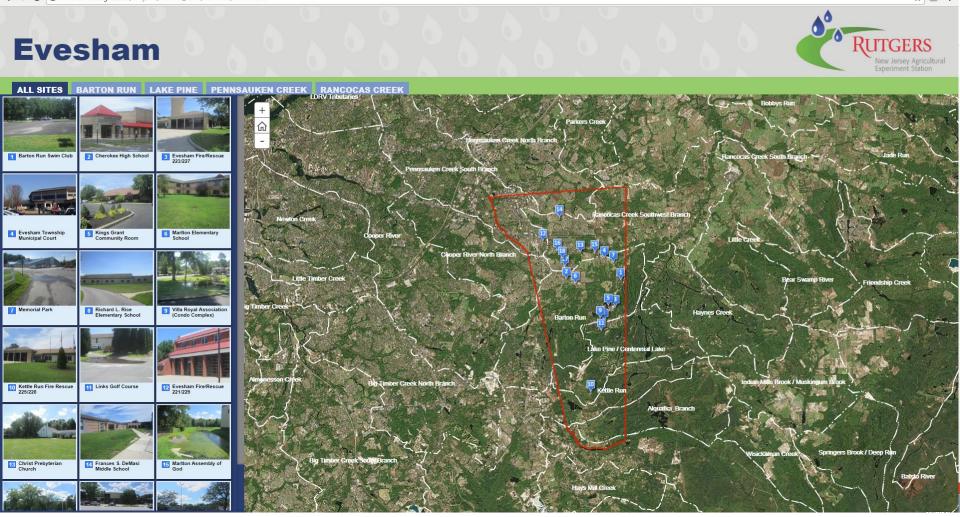
RUTGERS

Stormwater is currently directed to an existing detention basin. Cisterns adjacent to the building can harvest roof runoff to be used for washing department vehicles. Installing a rain garden on the east side of the building can capture, treat, and infiltrate roof additional runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	ous Cover		ting Loads f vious Cover		Runoff Volume from Im	pervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44"
45	42,532	2.1	21.5	195.3	0.033	1.17

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.071	12	5,348	0.20	680	\$3,400
Rainwater harvesting	0.094	16	7,099	0.27	2,800 (gal)	\$5,600

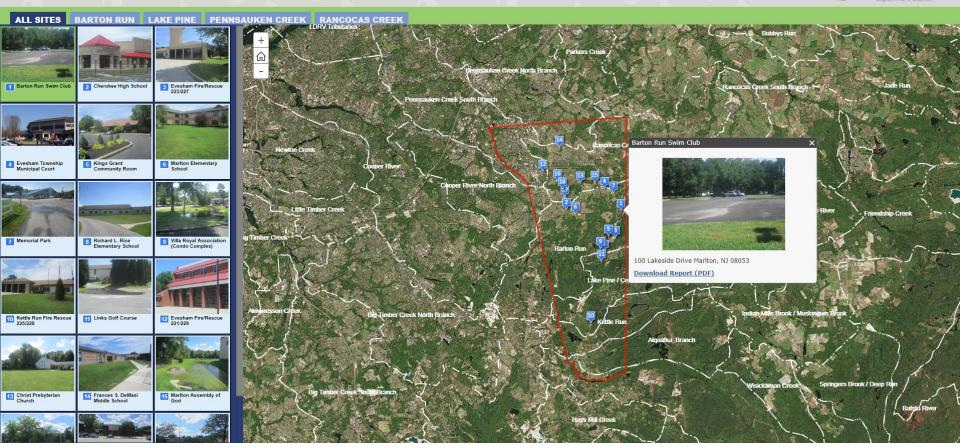
GREEN INFRASTRUCTURE RECOMMENDATIONS



Kettle Run Fire/Rescue 225/228

- bioretention system
- rainwater harvesting
- drainage area
- **[]** property line
- 2015 Aerial: NJOIT, OGIS

Evesham



☆ 🖸 :

New Jersey Agricultural

Evesham

☆ 🖸 :

ICA/RAP Final Thoughts

• Plans promote action

TGERS

- Plans are a conduit for funding
- Impervious cover reduction action plan provide sites for developers to offset impacts
- Wide range in cost of projects (Eagle Scout projects to economic stimulus money projects)
- Foundation for stormwater utilities, watershed restoration plans, stormwater mitigation plan, and/or integrated water quality plans

RUTGERS THE STATE UNIVERSITY OF NEW JERSEY Final Thoughts

- Planning needs to be quick, simple and inexpensive
- Plans are conduits for funding
- All opportunities need to be field verified
- Local champions are needed to get projects in the ground
- It takes time to develop relationships

www.water.rutgers.edu

THE STATE UNIVERSITY OF NEW JERSEY

RUTGERS

Questions?

