

Impervious Cover Assessment and Reduction Action Plan for Vineland, New Jersey

December 11, 2017

Christopher C. Obropta, Ph.D., P.E.

obropta@envsci.rutgers.edu

www.water.rutgers.edu

Rutgers Cooperative Extension

Rutgers Cooperative Extension (RCE) helps the diverse population of New Jersey adapt to a rapidly changing society and improves their lives through an educational process that uses science-based knowledge.

RUTGERS

Water Resources Program

WATER RESOURCES PROGRAM

BESEARCH

NO

Integrating research, education, and extension

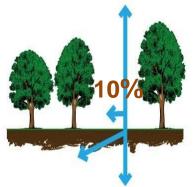
Delivering solutions based on sound science

Working with various members of the community, including municipalities, NGOs, and individual residents

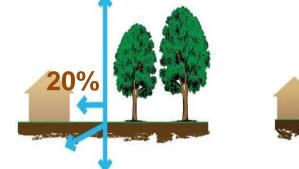
EXTENSION

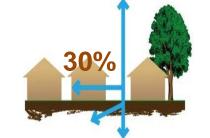
Solving water resources issues in New Jersey

The Water Resources Program is one of many specialty programs under Rutgers Cooperative Extension.


Our Mission is to identify and address community water resources issues using sustainable and practical science-based solutions.

The Water Resources Program serves all of New Jersey, working closely with the County Extension Offices.



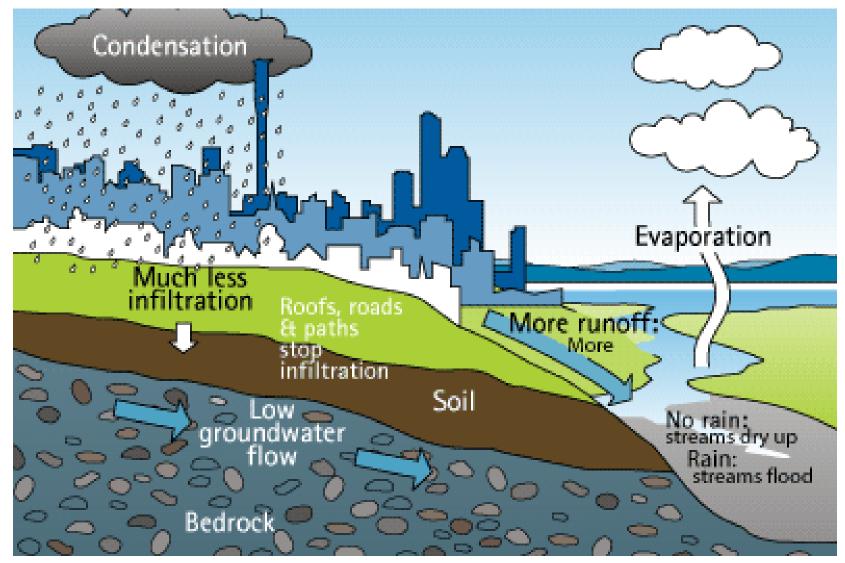

Water Resources Program

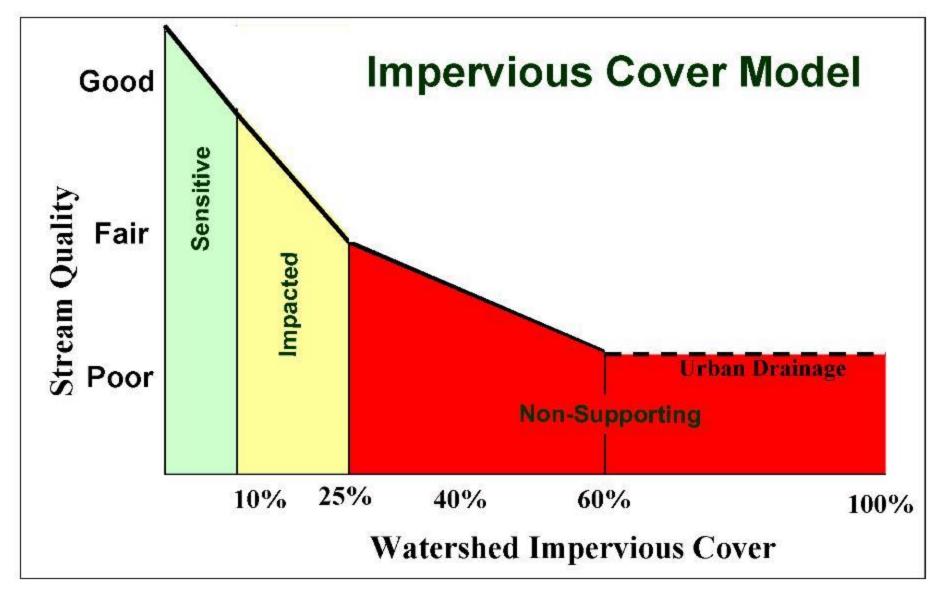
The Impact of Development on Stormwater Runoff

RUTGERS

More development

More impervious surfaces


More stormwater runoff


Water Resources Program

The <u>Urban</u> Hydrologic Cycle

RUTGERS

Original ICM developed based on 200+ reports and papers

Reference: Tom Schueler and Lisa Fraley-McNeal, Symposium on Urbanization and Stream Ecology, May 23 and 24, 2008

Green Infrastructure

...an approach to stormwater management that is cost-effective, sustainable, and environmentally friendly Green Infrastructure projects:

- capture
- filter
- absorb
- reuse

stormwater to maintain or mimic natural systems and treat runoff as a resource

Green Infrastructure includes:

- green roofs
- rainwater harvesting
- tree filter/planter boxes
- rain gardens/bioretention systems
- permeable pavements
- vegetated swales or bioswales
- natural retention basins
- trees & urban forestry
- green streets

Parker Urban Greenscapes

It's all about managing impervious surfaces !

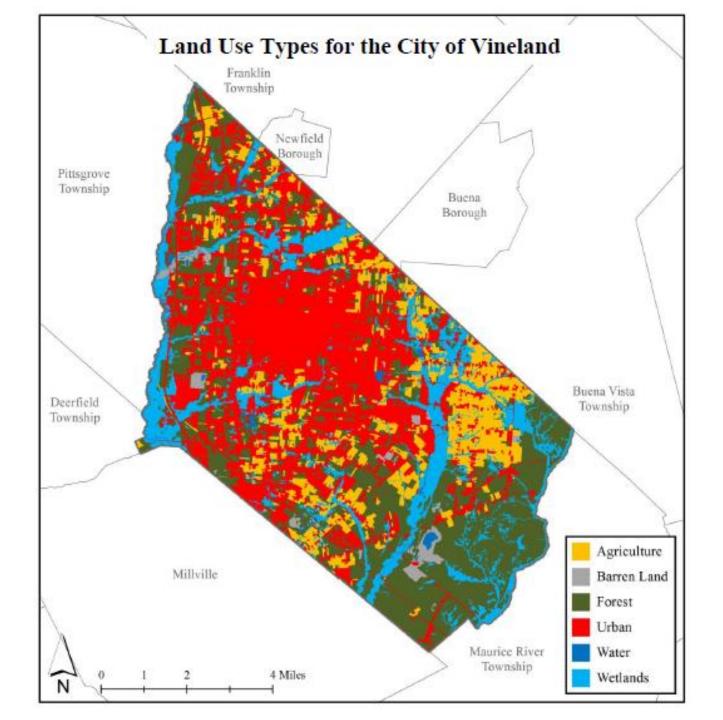
Eliminate it !

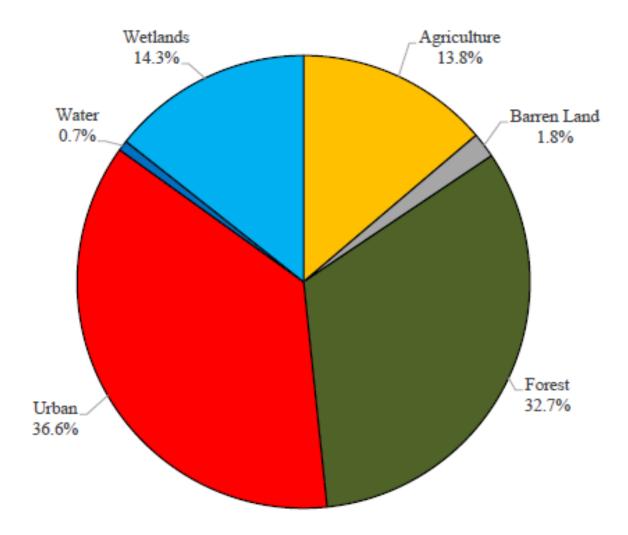
Change it !

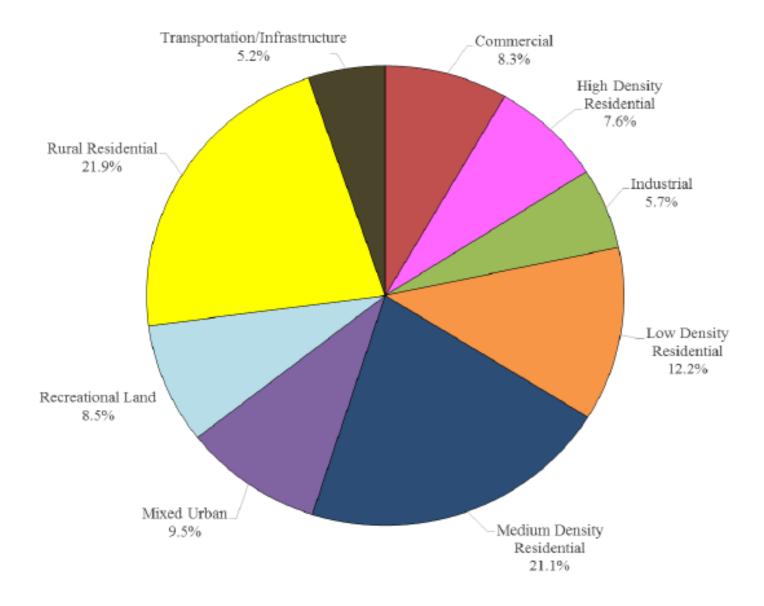
Disconnect it !

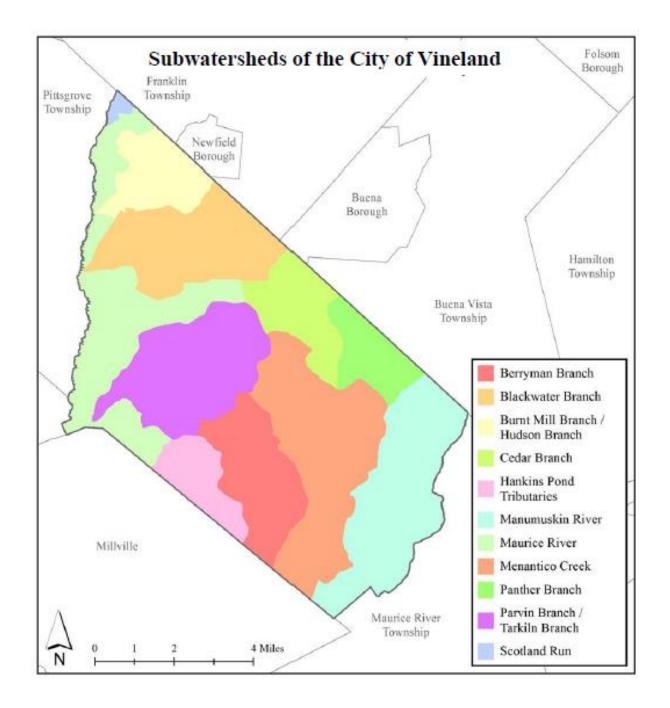
Reuse it !

Impervious Cover Assessment




Impervious Cover Assessment


RUTGERS


- Analysis completed by watershed and by municipality
- Use 2012 Land Use data to determine impervious cover
- Calculate runoff volumes for water quality, 2, 10 and 100 year design storm and annual rainfall
- Contain three concept designs

Watershed	Total Area (ac)	Impervious Cover (ac)	%
Berryman Branch	3,841.2	283.7	7.4%
Blackwater Branch	5,255.8	732.9	14.0%
Burnt Mill Branch / Hudson Branch	2,456.2	280.5	11.5%
Cedar Branch	2,687.2	345.6	13.0%
Hankins Pond Tributaries	1,837.4	287.5	15.7%
Manumuskin River	6,456.1	51.7	0.8%
Maurice River	6,389.9	1,074.5	17.0%
Menantico Creek	7,370.8	520.4	7.2%
Panther Branch	1,960.5	76.2	3.9%
Parvin Branch / Tarkiln Branch	5,714.5	1,324.1	23.3%
Scotland Run	179.9	10.5	6.1%
Total	44,149.3	4,987.7	11.4%

Subwatershed	NJ Water Quality Storm (MGal)	Annual Rainfall of 44'' (MGal)	2-Year Design Storm (3.3") (MGal)	10-Year Design Storm (4.9") (MGal)	100-Year Design Storm (7.8") (MGal)
Berryman Branch	9.6	339.3	25.4	39.3	67.9
Blackwater Branch	24.9	875.7	65.7	101.5	175.1
Burnt Mill Branch / Hudson Branch	9.5	335.7	25.2	38.9	67.1
Cedar Branch	11.7	413.4	31.0	47.9	82.7
Hankins Pond Tributaries	9.7	342.9	25.7	39.7	68.6
Manumuskin River	1.8	62.1	4.7	7.2	12.4
Maurice River	36.5	1,284.3	96.3	148.9	256.9
Menantico Creek	17.6	621.2	46.6	72.0	124.2
Panther Branch	2.6	90.8	6.8	10.5	18.2
Parvin Branch / Tarkiln Branch	44.9	1,581.8	118.6	183.3	316.4
Scotland Run	0.4	13.1	1.0	1.5	2.6
Total	169.3	5,959.2	446.9	690.7	1,191.8

WE LOOK HERE FIRST:

✓ Schools

RUTGERS

- ✓House of Worship
- ✓Libraries
- ✓ Municipal Building
- ✓ Public Works
- ✓ Firehouses
- ✓Post Offices
- ✓Elks or Moose Lodge
- ✓ Parks/ Recreational Fields

- 20 to 40 sites are entered into a PowerPoint
- Site visits are conducted

City of Vineland Impervious Cover Assessment Landis Intermediate School, 61 West Landis Avenue

PROJECT LOCATION:

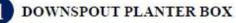
DOWNSPOUT PLANTER BOX: Two downspout planter boxes can be installed outside a building east of the school. These are wooden boxes with plants installed at the base of a downspout that provide an opportunity to beneficially reuse rooftop runoff.

BIORETENTION SYSTEM: Two rain gardens can be installed on the north side of the school. The rain gardens would reduce runoff and erosion and allow stormwater infiltration.

RAINWATER HARVESTING SYSTEM: Rainwater can be harvested from the roof of the building and stored in a rain barrel. The water can be used to water the school garden.

POROUS PAVEMENT: Porous pavement can be installed in the western parking lot near the baseball field. Porous pavement promotes groundwater recharge and filters stormwater.

DOWNSPOUT PLANTER BOX


City of Vineland Impervious Cover Assessment South Vineland United Methodist Church, 2724 South Main Road

PROJECT LOCATION:

DOWNSPOUT PLANTER BOX: A downspout planter box can be installed on the eastern side of the church. This is a wooden box with plants installed at the base of a downspout that can provide an opportunity to beneficially reuse rooftop runoff.

POROUS PAVEMENT: Porous pavement can be installed to replace the parking spots along the west side of the lot. Porous pavement promotes groundwater recharge and filters stormwater.

City of Vineland Impervious Cover Assessment *Vineland Public Library, 1058 East Landis Avenue* PROJECT LOCATION:

BIORETENTION SYSTEM: Bioretention systems could be installed adjacent to the library. The bioretention systems would reduce sediment and nutrient loading to the local waterway and increase groundwater recharge.

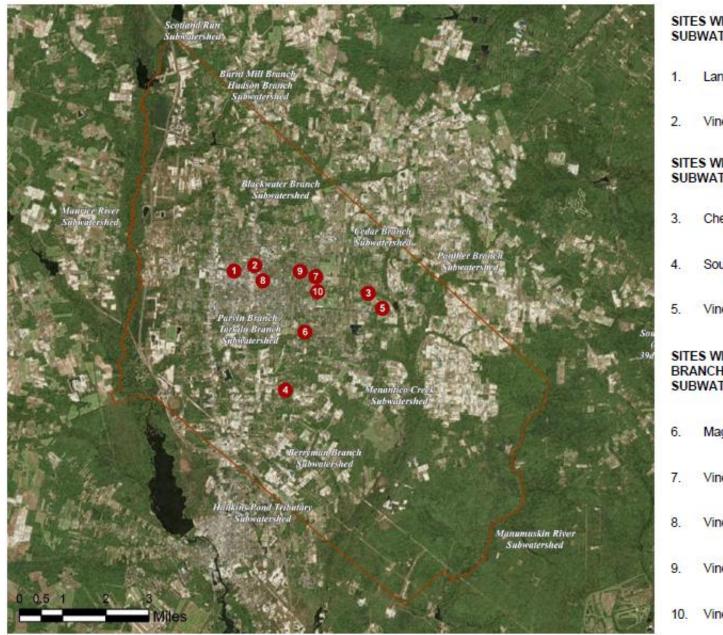
POROUS PAVEMENT: Porous pavement could be installed in two locations of the parking lot. Porous pavement promotes groundwater recharge and filters stormwater.

EDUCATIONAL PROGRAM: The RCE Water Resources Program's, Stormwater Management in Your Backyard can be delivered to educate the public about stormwater management and engage them in designing and building the bioretention systems.

<section-header><section-header>
BIORETENTION SYSTEM

Image: State in the state in th

EDUCATIONAL PROGRAM



Impervious Cover Reduction Action Plan

CITY OF VINELAND: GREEN INFRASTRUCTURE SITES

SITES WITHIN THE MAURICE RIVER SUBWATERSHED:

- 1. Landis Intermediate School
- 2. Vineland Fire Department

SITES WITHIN THE MENANTICO CREEK SUBWATERSHED:

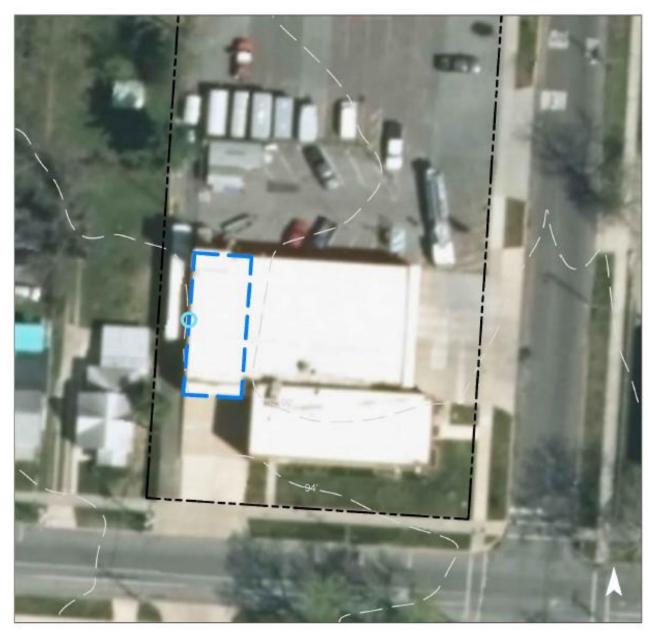
- 3. Chestnut Assembly of God
- 4. South Vineland Methodist Church
- 5. Vineland High School

SITES WITHIN THE PARVIN BRANCH/TARKILN BRANCH SUBWATERSHED:

- 6. Magnolia Shopping Court
- 7. Vine Haven Adventist School
- 3. Vineland Learning Complex
- 9. Vineland Public Library
- 10. Vineland YMCA

VINELAND FIRE DEPARTMENT

Subwatershed:	Maurice River
Site Area:	45,000 sq. ft.
Address:	110 North 4 th Street Vineland, NJ 08360
Block and Lot:	Block 2914, Lots 8-12



Stormwater is currently directed to a small garden on the south side of the building and to the sidewalk. Downspouts can be directed to a cistern on the west side of the building to capture rainwater, which can be used for washing the firetrucks. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervi	ous Cover		sting Loads : vious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	TP	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44"	
94	42,380	2.0	21.4	194.6	0.033	1.16	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Rainwater harvesting	0.046	8	1,000	0.09	1,000 (gal)	\$2,000

GREEN INFRASTRUCTURE RECOMMENDATIONS

Vineland Fire Department

- rainwater harvesting
- [] drainage area
- [] property line
 - 2015 Aerial: NJOIT, OGIS

40

CHESTNUT ASSEMBLY OF GOD

Subwatershed:	Menantico Creek
Site Area:	1,124,291 sq. ft.
Address:	2554 East Chestnut Avenue Vineland, NJ 08361
Block and Lot:	Block 4405, Lot 30

Stormwater is currently directed to the parking lot and retention basins on the east and west side of the property. Parking spots by the southeastern side of the building can be replaced with pervious pavement to capture and infiltrate stormwater. Downspouts can be disconnected and directed to a rain garden adjacent to the building, which can capture, treat, and infiltrate roof runoff. A preliminary soil assessment suggests that the soils have very suitable drainage characteristics for green infrastructure.

Impervious Cover			sting Loads vious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	TP	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44"	
21	238,673	11.5	120.5	1,095.8	0.186	6.55	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.183	31	13,404	0.36	1,755	\$8,775
Pervious pavement	0.835	140	61,261	1.67	10,820	\$270,500

GREEN INFRASTRUCTURE RECOMMENDATIONS

Chestnut Assembly of God

- bioretention system
- pervious pavement
- 🚺 drainage area
- [] property line
 - 2015 Aerial: NJOIT, OGIS

VINELAND PUBLIC LIBRARY

Subwatershed:	Parvin / Tarkiln Branch
Site Area:	90,238 sq. ft.
Address:	1058 East Landis Avenue Vineland, NJ 08360
Block and Lot:	Block 3116, Lot 27

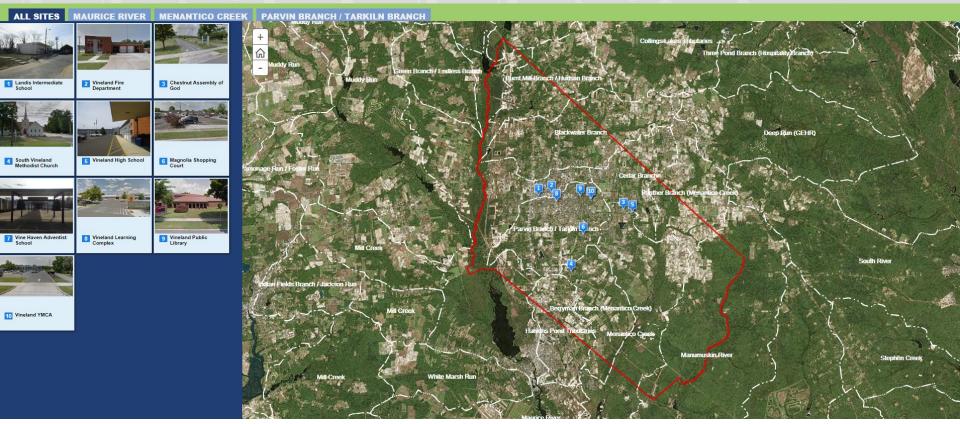
Stormwater is currently directed through connected downspouts to eight storm drains on the property. Parking spots by the north and west side of the building can be replaced with pervious pavement to capture and infiltrate stormwater. Downspouts can be disconnected and directed to rain gardens adjacent to the building, which can capture, treat, and infiltrate roof runoff as well as provide an educational opportunity. A preliminary soil assessment suggests that the soils have very suitable drainage characteristics for green infrastructure.

Impervious Cover			sting Loads vious Cover		Runoff Volume from Impervious Cover (Mgal)			
%	sq. ft.	TP	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44"		
65	58,744	2.8	29.7	269.7	0.046	1.61		

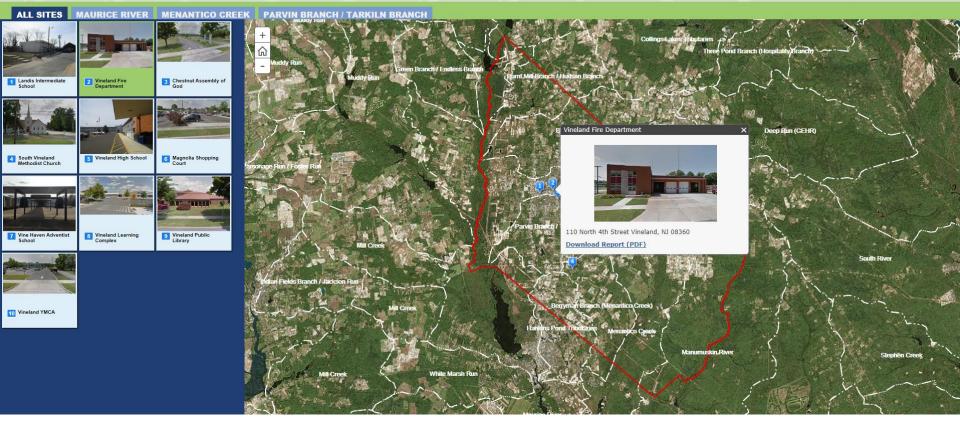
Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.126	21	18,535	0.50	1,390	\$6,950
Pervious pavement	0.536	90	39,307	1.07	3,400	\$85,000

GREEN INFRASTRUCTURE RECOMMENDATIONS

Vineland Public Library


- bioretention system
- pervious pavement
- C drainage area
- [] property line

2015 Aerial: NJOIT, OGIS


City of Vineland

City of Vineland

ICA/RAP Final Thoughts

• Plans promote action

TGERS

- Plans are a conduit for funding
- Impervious cover reduction action plan provide sites for developers to offset impacts
- Wide range in cost of projects (Eagle Scout projects to economic stimulus money projects)
- Foundation for stormwater utilities, watershed restoration plans, stormwater mitigation plan, and/or integrated water quality plans

RUTGERS THE STATE UNIVERSITY OF NEW JERSEY Final Thoughts

- Planning needs to be quick, simple and inexpensive
- Plans are conduits for funding
- All opportunities need to be field verified
- Local champions are needed to get projects in the ground
- It takes time to develop relationships

www.water.rutgers.edu

THE STATE UNIVERSITY OF NEW JERSEY

RUTGERS

Questions?

