Water Quality Trading Program
Structures:
What Works and
What Doesn’t Work
Josef Kardos
Graduate Student
Department of Environmental Sciences
Rutgers University
Jkardos@envsci.rutgers.edu
May 2, 2006
NJWEA Conference
Outline

• Foundation
 – Principles
 – Conditions that favor trading

• *Structure*
 – Key components of a trading program
 – Examples from other programs
 – Options for Passaic Trading Project
How Trading Works

• A ‘cap’ or limit is placed on the total amount of pollutant that can be released from all sources
• Sources receive an allocation, i.e., authorization to release a given amount of pollutant
• Sources can meet their allocation by:
 – Making all necessary reductions on-site OR
 – Buying additional allocations - credits - from other sources that have reduced pollutants below their own allocation
How Trading Works, cont’d

- The exchange of credits to meet the water quality cap is ‘trading’
 - BUYERS have high pollutant control costs
 - SUPPLIERS have lower costs
- Water quality trading (WQT) takes different forms
 - Point/source trades
 - Point/nonpoint source trades
Foundation: Principles

• Water quality trading is a tool to help meet water quality goals
 – At lower cost
 – Sooner than might otherwise occur
 – Multiple benefits

• Water quality trading is **not**
 – A way to evade responsibility for water quality goals
 – A way to dismantle the CWA

• Key functions for all trading programs
 – CWA compliance, public information, connecting buyers/sellers
Foundation: Conditions that favor trading

- Water quality problem and pollutant sources are characterized
- Desired water quality target is in place, e.g., consensus cap or TMDL → Driver
- Multiple point sources face more stringent permit limits, i.e., water quality-based limits
- Significant pollutant control cost differences exist among PS
Foundation:
Conditions that favor trading (2)

- Sufficient modeling, data available to assess relative water quality impact of trades
- States, stakeholders willing to take nontraditional approach

* Rutgers/Cornell developing project
 - Research based
 - Neutral party
Trading Structures

• What is it?
• Why does it matter?
• Permit systems
• Potential trading structures for the Passaic
Trading Structures

• **What is a trading structure?**
 - The overall process for executing trades
 • How does a discharger buy or sell credits?
 • What is the role of the regulator in permitting or rejecting trades? How does the regulator evaluate compliance?

• **Poorly planned structure is common pitfall in other trading programs**

• **Structure should have flexibility, accountability, enforceability**
Components of a Trading Structure

Permit system

<table>
<thead>
<tr>
<th>Define compliance for PS</th>
<th>Ensure accountability and define liability for pollutant reductions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintain ability for Regulator to enforce against noncompliance</td>
<td>Ensure avoidance of hotspots</td>
</tr>
<tr>
<td>Define trading area boundaries</td>
<td>Track trades and progress towards WQ goals</td>
</tr>
<tr>
<td>Define credits</td>
<td>Manage risk among parties to trades</td>
</tr>
<tr>
<td>Enable communication among credit buyers and sellers</td>
<td>Provide information to the public and other stakeholders</td>
</tr>
<tr>
<td>Clear approval process for trades</td>
<td>NGO support</td>
</tr>
<tr>
<td>Monitoring and reporting</td>
<td></td>
</tr>
</tbody>
</table>
Importance of Permit system

- Permit system \rightarrow structure \rightarrow likelihood of success
- Different permit systems \rightarrow Different structures
 - Individual point source or
 - Watershed-based permitting system
Trading Structures That Work

- Long Island Sound (Connecticut)
 - Watershed-based permit, i.e. general permit
 - Trading process: WWTPs have individual load limits for total nitrogen (TN). Trades are made indirectly through state agency
 - Trading ratios are defined in general permit
 - Formula for price of a credit is defined in the general permit; price is updated annually
 - Trades are easily tracked
 - Program is simple to administer
 - WWTPs continue to monitor and report TN
Trading Structures That Work

• Lower Minnesota River
 – Watershed-based permit, i.e. general permit
 – Trading process: WWTFs have individual limits for total phosphorus (TP). WWTFs can CHOOSE to trade directly on individual basis or form trading associations.
 – Trading ratios are defined in general permit
 – Price of a credit is negotiated by the buyer and seller
 – Option of trading association reduces risk of noncompliance
 – Trades are easily tracked
 – Program is simple to administer
 – WWTFs continue to monitor and report TP

• Programs that use watershed-based permits have simple and clear processes to make trades
Successful trading programs have successful structures

- Define compliance for PS
- Maintain ability for Regulator to enforce against noncompliance
- Define trading area boundaries
- Define credits
- Enable communication among credit buyers and sellers
- Clear approval process for trades
- Monitoring and reporting

- Ensure accountability and define liability for pollutant reductions
- Ensure avoidance of hotspots
- Track trades and progress towards WQ goals
- Manage risk among parties to trades
- Provide information to the public and other stakeholders
- NGO support

- **Permit type**— selection of individual point source or watershed based permitting system
Common trading obstacles

- TMDL not in place
 - Rock River (WI)
- Uncertain trading guidelines and transaction costs
 - Fox Wolf (WI)
- Complicated approval process
 - Chatfield Reservoir (CO), Cherry Creek (CO), Lake Dillon (CO), Kalamazoo (MI)
- Flawed trading ratio could have created a hot spot
- Difficulty identifying participants
 - Kalamazoo (MI)
- Not economically favorable to trade
 - Blue Plains (VA), Red Cedar River (WI), Boulder Creek (CO)
Options for Passaic project

• 3 possible structures
 – Market-like trading
 – Direct trading for water treatment
 – Trading association

• MS4s and WWTPs can have different trading structures
Phosphorus Impaired Streams & WWTP Loads

Amount of TP Discharge (lbs/yr)
- 600 - 24,989
- 25,000 - 49,999
- 50,000 - 74,999
- 75,000 - 99,999
- 100,000 - 123,000

TP Status
- Full Attain
- Insufficient
- Non Attain
- Watershed Streams
- Lakes & Reservoirs
- Sub-Watershed
- Watershed Boundary

Data Source: NJDEP, 2004 Integrated List, DMRs, Phase I TMDL (Proposed), TRC Omni

The Map Library of New Jersey - RUTGERS
Structure 1: Market-like trading

- Original vision for WQT - market environment for trading
- Buyers and sellers find each other and negotiate trades
- Permit type
 - TP limits for each PS are set in watershed-based permit (Lower Minnesota River approach)
 - Each PS gets individual NJPDES permit for TP
Structure 2: Direct trading for water treatment

- Permit type
 - Each PS gets individual NJPDES permit for TP
 - TP limit based on TMDL WLA
 - PS that exceed TP limits compensate water purveyor for cost of added water treatment
 - Compensation – negotiated or predetermined by unit price for TP load exceedance
 - Which state authority can approve these trades?
Structure 3: Trading associations

- Permit type
 - PS form an association, receive watershed-based permit for TP
 - Permit gives collective cap for association
 - Cap = sum of WLAs from PS

- PS in group permit can trade among themselves to meet collective cap
 - If association violates cap, receive penalty proportional to cap exceedance
Structure 3: Trading associations (contd.)

- Most flexible structure
- Reduces risk of noncompliance for a WWTP
- Internal trading within the association is not subject to NJDEP approval
- NJDEP would retain right to inspect individual WWTPs and enforce as needed
- Monitoring and reporting requirements for TP specified in group permit
- PS continue to have NJPDES permits for other parameters
EPA supports watershed-based permitting (WBP)

- Advantages:
 - Better quality NPDES permits
 - Less contentious permit issuance
 - Mechanism to implement TMDLs
 - Foundation for water quality trading
 - Emphasis on environmental results due to watershed planning
 - Attainment of watershed goals
Watershed-based permit for the Passaic

- Feasibility of WBP for Passaic watershed
 - WWTP association already in place: Passaic River Basin Alliance
 - EPA guidance: 6 steps to WBP
 - Steps 1-3 already complete
- Passaic WBP requires strong support and advance effort from NJDEP
Structure 3: Added Benefits

- Protection for low income municipalities
 - As part of an association, not left alone to meet WWTP and MS4 allocations for TP

- MS4 group permit is potential catalyst for stormwater utilities in NJ
Further steps for Passaic Trading Structure

- Consider phasing in the target cap
- Develop water quality equivalence ratios (i.e. trading ratios)
- Develop strategies to avoid hot spots
- Account for growth
Recommendations from other programs

- Know your constituents
- Make environmental data available and understandable
- Make policy based on scientific data
- A fiscal impact statement is a valuable tool to demonstrate value of WQT
- Trading process has to be simple, flexible, accountable, enforceable
- What is purpose of trading – interim fix or long term solution?
For more information:

www.water.rutgers.edu/Projects/trading/WQTrading.htm