Bioretention Research at the University of Maryland

Allen P. Davis
Department of Civil and Environmental Engineering, and
Maryland Water Resources Research Center
University of Maryland
College Park, MD 20742

May 29, 2008
The Challenge

Figure 1.1 Water Balance at a Developed and Undeveloped Site
(Source: Schueler, 1987)
Conventional
Hydrology
Sources of Pollutants
Sources of Pollutants
Low Impact Development

- Pre-development Quantity & Quality
- Keep Stormwater On Site
- Promote Infiltration; more ET
- Filtering and other Natural Treatment Mechanisms
- Apply Green Engineering Principles to Land Development
Early Bioretention
Bioretention
Goals

- Hydrology Management
- Improvements in Water Quality
- Understand Fundamentals
- Facility Design
 - Size
 - Media
- Facility Management
Bioretention (Rain Gardens)

Hydrology: Pooling, Infiltration, & Evapotranspiration

Quality: Filtration, Adsorption, Biodegradation
Three Timescales

- **Event timescale**
 - Hydrologic management and removal of pollutants from runoff during storm event

- **Between-event timescale**
 - Degradation or incorporation of captured pollutants

- **Facility Life timescale**
 - Ecological and Biogeochemical transformations
Bioretention research & monitoring
Hydrographs

- **Post-development**
 - Higher peak,
 - Greater volume,
 - Earlier peak

- **Predevelopment**
Flows, 4/3/06 Storm Event (CP)

Effluent stopped at 4/4/06 9:12

Peak Delay
Peak Height Reduction
Discharge vs. Zero-discharge events (SS)

Rainfall depth (cm)

Event duration (hr)

Underdrain flow

No flow

60, 23
Peak Reduction Ratio, R_{peak}

\[R_{peak} = \frac{q_{peak-out}}{q_{peak-in}} \]

Li, Sharkey, Hunt, & Davis, J. Hydro. Eng., accepted 2008
Performance/Design Relationships

\[f_{24} = \frac{\text{Volume}_{24-out}}{\text{Volume}_{24-in}} \]

Li, Sharkey, Hunt, & Davis, J. Hydro. Eng., accepted 2008
Water Quality

College Park
Input
Output

Silver Spring
Input
Output
Water Quality Data (RG)

\[EMC = \frac{M}{V} = \frac{\int_0^{tr} c(t)q(t)dt}{\int_0^{tr} q(t)dt} \]

Davis, Env. Eng. Sci. 2007
Bioretention TSS (CP & SS)

Legend
- CP
 - Influent
 - Effluent
- SS
 - Influent
 - Effluent
- BDL or no flow

TSS EMC (mg/L) vs. Exceedance Probability
Media & Suspended Solids \((O&G, Pb)\)
Bioretention
Zinc (CP & SS)

Legend
- CP
 - Influent
 - Effluent
- SS
 - Influent
 - Effluent
 - BDL or no flow

Zinc EMC (ug/L) vs. Exceedance Probability
Total Phosphorus (CP)

Legend
- Influent
- Effluent
- BDL

Phosphorus Conc. (mg/L as P) vs. Exceedance Probability

- Influent data points indicate concentrations ranging from 0.1 to 2 mg/L as P.
- Effluent data points show a trend line starting from 0.1 mg/L as P with an increasing trend towards 2 mg/L as P with increasing probability.
- BDL points are indicated with an open square symbol.

The graph shows the relationship between phosphorus concentration and exceedance probability, with a clear increase in concentration as the probability increases.
Media & Phosphorus

TP Removal Efficiency, % vs Infiltration Rate, cm/min

Hsieh & Davis J. Env. Eng. 2005
TN (CP)

Exceedance Probability vs. Nitrogen Conc. (mg/L as N)

Legend
- Influent
- Effluent
Chloride (CP)

Exceedance Probability vs. Chloride Conc. (mg/L)

Legend
- Influent
- Effluent
Pollutant Mass Loads

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>CP Load (kg/ha-yr)</th>
<th>CP Discharge (kg/ha-yr)</th>
<th>SS Load (kg/ha-yr)</th>
<th>SS Discharge (kg/ha-yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>674</td>
<td>27</td>
<td>233</td>
<td>2</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.93</td>
<td>0.074</td>
<td>0.23</td>
<td>0.002</td>
</tr>
<tr>
<td>Copper</td>
<td>0.23</td>
<td>0.079</td>
<td>0.13</td>
<td>0.005</td>
</tr>
<tr>
<td>Lead</td>
<td>0.017</td>
<td><0.017</td>
<td>0.017</td>
<td><0.017</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.086</td>
<td>0.035</td>
<td>0.017</td>
<td><0.017</td>
</tr>
<tr>
<td>TN</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td><1</td>
</tr>
<tr>
<td>Nitrate</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td><1</td>
</tr>
<tr>
<td>TP</td>
<td>1</td>
<td>1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Chloride</td>
<td>60</td>
<td>154</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>TOC</td>
<td>48</td>
<td>55</td>
<td>39</td>
<td><1</td>
</tr>
</tbody>
</table>
Bioretention PAH (CP)

PAH concentration (µg/L)

- Naphthalene
- Acenaphthylene
- Fluorene
- Phenanthrene
- Anthracene
- Fluoranthe
- Pyrene
- Benzo(a)anthracene
- Chrysene
- Benzo(b+k)fluoranthene
- Indeno(1,2,3-cd)pyrene
- Dibenz(a,h)anthracene
- Benzo(g,h,i)perylene

PAHs in dissolved phase

- CPI
- CPO

w/ UMBC
Bacterial Transport

The graph shows the transport of B6914 C/C₀ under different conditions. The x-axis represents time in hours, ranging from 0 to 6. The y-axis represents the concentration ratio B6914 C/C₀, ranging from 0 to 1.

- **Red squares** represent Coarse IOCS.
- **Black squares** represent Coarse sand.
- **Green diamonds** represent Fine IOCS.
- **Brown diamonds** represent Fine sand.
- **Gray crosses** represent conventional media.

The graph illustrates the differences in transport efficiency across various media types and conditions.
Bacteria-columns

Removal efficiency for B6914

Under UV light
Nitrate

- Critical Bay Pollutant
- Tough

Runoff

Bioretention Soil/Media

Biological Denitrification Zone

$\text{NO}_3^- \Rightarrow \text{N}_2$

Three Timescales

- **Event timescale**
 - Hydrologic management and removal of pollutants from runoff during storm event

- **Between-event timescale**
 - Degradation or incorporation of captured pollutants

- **Facility Life timescale**
 - Ecological and Biogeochemical transformations
Motor Oil

Bench Reactor

After 0 day

17 days

Biotic

18 days

Inhibited

Hong et al. Water Environ. Res. 2006
Survival of Trapped E. coli

Drainage time (days)

- Conventional bioretention media
- Fine IOCS
Bacteria Survival

Drainage time (days)

- **N/No** vs. **Time (days)**
 - **E. Coli**
 - **Protozoa**

Total protozoa (MPN)

- **Time (days)**
Three Timescales

- **Event timescale**
 - Hydrologic management and removal of pollutants from runoff during storm event

- **Between-event timescale**
 - Degradation or incorporation of captured pollutants

- **Facility Life timescale**
 - Ecological and Biogeochemical transformations
Suspended Solids Deposition

➢ A three-layer model

Incoming Suspension

Mass balance:
\[q \frac{\partial C}{\partial Z} + \rho \frac{\partial \sigma}{\partial t} = 0 \]

Solids deposition
\[\frac{\partial C}{\partial Z} = -\lambda C \]

Hydraulic conductivity:
\[\frac{K_0}{K_b} = (1 + \gamma \sigma)^2 \]

\[K_a = K_0 \]

Li & Davis, J. Env. Eng. 2008
TSS Accumulation

- TSS do not penetrate below 5-20 cm in the media
- Clay-size components exert controlling effect on clogging
- Intermittent flow conditions allow more particulate capture than continuous flow
- Periodic surface media replacement can be used to recover hydraulic conductivity.

Li & Davis, J. Env. Engg. (2008)
Metals Accumulation - Pb

Navy Yard

Dimensionless TSS or Normalized Captured Pb Deposit

Li & Davis, Env. Sci. Technol. In press
Depth and Distance - Lead

Depth (cm)

Pb total (mg/kg)

Original BSM
- Solid = Organic
- Empty = BSM

Depth and Distance - Lead

Depth (cm)

Pb total (mg/kg)

Original BSM
- Solid = Organic
- Empty = BSM
<table>
<thead>
<tr>
<th>Metal</th>
<th>Soil retention</th>
<th>Plant uptake</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>4.3%</td>
<td>1.1%</td>
<td>94.6%</td>
</tr>
<tr>
<td>Zn</td>
<td>5.5%</td>
<td>1.9%</td>
<td>92.6%</td>
</tr>
<tr>
<td>Cu</td>
<td>9.5%</td>
<td>1.4%</td>
<td>89.1%</td>
</tr>
<tr>
<td>Cd</td>
<td>3.1%</td>
<td>1.2%</td>
<td>95.7%</td>
</tr>
</tbody>
</table>

Sun & Davis, Chemosphere, 2007
Accumulation - PAH

PAH Concentration (µg/g dry)

Top Crust (1-2 mm)
Top Loose Gravel
 In 0 to 10 cm
 In 10 to 20 cm
 In 20 to 30 cm
 In 30 to 41 cm
 In 41 to 51 cm
 Mid 0 to 10 cm
 Mid 10 to 20 cm
 Mid 20 to 30 cm
 Mid 30 to 41 cm
What we know so far…

- Excellent Management of Hydrology
 - Peak Reduction
 - Volume Reduction
 - Peak Delay
 - Evapotranspiration
 - Infiltration
- Media Volume: Area & Depth
 Apparently Control

(Hydrologic Management)
What we know so far...

- Excellent Removal of Several Pollutants Independent of Media
 - Suspended Solids
 - Oil and Grease (Physical Capture)
 - Metals: Lead, Zinc, Copper, Cadmium
 - Bacteria
- High Infiltration Media can be Employed
 - Err on side of greater infiltration
- Depth of Facility not Important here
What we know so far...

- Phosphorus, Ammonia, Organic N Removal Complex
 - Adsorption
 - Transport with Suspended Solids
 - Preferential Flow Pathways
- Depth and Media Characteristics Important *(Chemical Processes)*
- Chloride may be a problem
What we know so far…

- Modifications for Sustainable Removal of Pollutants
- Encourage Biodegradation Processes
 - Denitrification Zone
 - Capture and Biodegradation of Oil & Grease
 - Biological Predation
- Exploitation for vegetation in uptake, degradation, and removal of pollutants.
Implementation Challenges

- Lack of Performance Information
- Lack of Understanding
- Space
- Utilities
- Regulatory Hurdles
- Inertia
- Contractor Inexperienced
- Specification Details
- Ownership of pollutants?
- Long term???
Co-Workers

- **Students**
 - Mohammad Shokuhian
 - Houng Li
 - Himanshu Sharma
 - Eunyoung Hong
 - Ameya Pradhan
 - Xueli Sun
 - Rebecca Stack

- **Others**
 - Roman Hsieh
 - Lan Zhang
 - Hunho Kim
 - Kelly Flint
 - Christie Minami
 - Philip Jones
 - Eric Seagren
 - Brian Needelman
 - Upal Ghosh & Katie DiBlasi
 - Bill Hunt & Lucas Sharkey
 - Jeff Karns
 - Neil Weinstein
 - Rufus Chaney
Research Sponsors

www.ence.umd.edu/~apdavis/Bioret.htm
Beyond...
The Proper Metrics for Success?

- How do we measure the environmental impact of land development and proposed solutions?
The Nitrogen Dilemma

- **Nitrogen** is the limiting pollutant for the Chesapeake Bay
- Ag lands discharge a high \(N \) load
- Developed lands generally discharge a low \(N \) load
- Save the Bay! Convert all farm land to houses!
TN (SS)