"Keep the Rain from the Drain" **Green Infrastructure for New Jersey**

Presented to Environmental Stewards of Hunterdon County by Christopher C. Obropta, Ph.D., P.E. on April 23, 2024

New Jersey Agricultural Experiment Station

Welcome and Introduction

Christopher C. Obropta, Ph.D., P.E. Phone: 908-229-0210 Email: <u>obropta@envsci.rutgers.edu</u>

www.water.rutgers.edu

Water Resources Program

Our mission is to identify and address water resources issues by engaging and empowering communities to employ practical sciencebased solutions to help create a more equitable and sustainable New Jersey.

LET'S TALK POLLUTION

NONPOINT SOURCE POLLUTION (NPS)

- Associated with stormwater runoff
- Runoff collects pollutants on its way to a sewer system or water body
- It cannot be traced to a direct discharge point such as a wastewater treatment facility

EXAMPLES OF NPS

- Oil and grease from cars
- Fertilizers
- Animal waste
- Grass clippings
- Septic systems

- Sewage leaks
- Household cleaning products
- Litter
- Agriculture
- Sediment

STORMWATER BASICS

What is stormwater?

Stormwater is the water from rain or melting snows that can become "runoff," flowing over the ground surface and returning to lakes and streams.

The Natural Hydrologic Cycle

1. It can *run off*

Courtesy of Texas Watershed Stewards, Texas A&M AgriLife Extension

2. It can be *absorbed* by plants and used for photosynthesis and other biological processes

Courtesy of Texas Watershed Stewards, Texas A&M AgriLife Extension

3. It can *infiltrate* through the soil surface and percolate downward to groundwater *aquifers*

Courtesy of Texas Watershed Stewards, Texas A&M AgriLife Extension

4. It can *evaporate*

Courtesy of Texas Watershed Stewards, Texas A&M AgriLife Extension

The Impact of Development on Stormwater Runoff

The Urban Hydrologic Cycle

New Jersey

- Most densely populated state
- 21 counties, 565 municipalities
- 95% of our waterways are impaired
- Harmful Algal Blooms (HABS) in many of our lakes
- Hammered by Ida, Henri, Sandy, and a bunch of Nor'easters
- Climate change is real

 more severe storms
 and sea level rise

Insight to current problem

- Stringent stormwater regulations on new development has not improved water quality
- We must retrofit existing older development with stormwater management to reduce impairments to our waterways
- Green infrastructure is a great tool to retrofit existing older development
- Local champions are needed to advocate for green infrastructure retrofits
- We need to create these champions where they don't already exist

GREEN INFRASTRUCTURE IN NEW JERSEY

Green infrastructure is ...

...an approach to stormwater management that is cost-effective, sustainable, and environmentally friendly.

Green infrastructure projects:

- capture,
- filter,
- absorb, and
- reuse

stormwater to restore the natural water cycle.

Green Infrastructure Practices

Bioretention Systems

- Rain Gardens
- Bioswales
- Stormwater Planters
- Curb Extensions
- Tree Filter Boxes
- Permeable Pavements
- Rainwater Harvesting
- Rain Barrels
- Cisterns
- Dry Wells
- Rooftop Systems
- Green Roofs
- Blue Roofs

Role of Green Infrastructure in NJ

- New "major" development <u>is</u> <u>required</u> to use green infrastructure
- Communities with combined sewers are using green infrastructure
- On a <u>voluntary basis</u>, existing development, is being retrofitted with green infrastructure

History of Stormwater Management

1st Attempt at Stormwater Management

Capture all runoff, pipe it, and send it directly to the river . . . prior to mid 1970's

2nd Iteration of Stormwater Management

Capture runoff, detain it, release it slowly to the river...mid 1970's to 2004

- Detain peak flow during large storm events for 18 hours (residential) or 36 hours (commercial)
- Reduce downstream flooding during major storms
- -Use concrete low flow channels to minimize erosion, reduce standing water, quickly discharge low flows
- Does not manage runoff from smaller storms allowing stormwater to pass through the system
- Directly discharges stormwater runoff to nearby stream, waterway, or municipal storm sewer system (at a controlled/managed rate)

3rd Generation of Stormwater Management

- Reduce stormwater runoff volume
- Reduce peak flows and flooding ...and....
- Maintain infiltration and groundwater recharge
- Reduce pollution discharged to local waterways

abc Action News, August 27, 2012

Stormwater Management

It is all about controlling runoff from impervious surfaces

Step 1: Depave

Step 2: Simple Disconnection

Downspout Disconnection

DOWNSPOUT CONNECTED TO SEWER SYSTEM

DOWNSPOUT DISCONNECTED FROM SEWER SYSTEM

Another Example of Simple Disconnection

For 1.25 inch storm, 3,811 cubic feet of runoff = **28,500 gallons**

For 1.25 inch storm, 581 cubic feet of runoff = **4,360 gallons**

	Volume of Runoff		
Design Storm	Connected (gallons)	Disconnected (gallons)	Percent Difference
1.25 inches (water quality storm)	28,500	4,360	85%

Disconnect to a Rain Barrel or Cistern

Impervious area is now <u>"disconnected"</u> from flowing directly into the storm sewer system

So Many Barrels to Choose From...

Rainwater Harvesting Systems

Or Larger Rainwater Harvesting Systems...

Rainwater Harvesting Systems

- These systems are often paired with other green infrastructure practices to increase their storage capacity or efficiency.
- Are commonly paired with a vegetative system to capture the overflow from the system once it has reached full capacity.

Disconnect to a Rain Garden

Rooftop runoff is now <u>"disconnected"</u> from flowing directly into the storm sewer system

Bioretention Systems/Rain Gardens

Lots of Rain Gardens

Bioretention Systems/Rain Gardens

- Rain gardens can be implemented throughout communities to begin the process of reestablishing the natural function of land.
- They offer one of the quickest and easiest methods to reduce runoff and help protect our water resources.

Step 3: Convert to Permeable Pavement

POROUS ASPHALT It is common to design porous asphalt in the parking stalls of a parking lot. This saves money and reduces wear. DRAINAGE AREA

The drainage area of the porous asphalt system is the conventional asphalt cartway and the porous asphalt in the parking spaces. Runoff from the conventional asphalt flows into the porous asphalt parking spaces.

SUBGRADE

Porous pavements are unique because of their subgrade structure. This structure includes a layer of choker course, filter course, and soil.

UNDERDRAIN

Systems with low infiltration rates due to soil composition are often designed with an underdrain system to discharge the water.

ASPHALT

This system is often designed with conventional asphalt in areas of high traffic to prevent any damage to the system.

Sec. 1

Permeable Pavements

- Underlying stone reservoir
- Porous asphalt and pervious concrete are manufactured without "fine" materials to allow infiltration
- Grass pavers are concrete interlocking blocks with open areas to allow grass to grow
- Ideal application for porous pavement is to treat a low traffic or overflow parking area

<u>ADVANTAGES</u>

COMPONENTS

- Manage stormwater runoff
- Minimize site disturbance
- Promote groundwater recharge
- Low life cycle costs, alternative to costly traditional stormwater management methods
- Mitigation of urban heat island effect
- Contaminant removal as water moves through layers of system

Porous Asphalt

Pervious Concrete

Permeable Pavers

Grass Pavers

Other Green Infrastructure Practices

- Bioswale
- Stormwater Planters
- Enhanced Tree Filters
- Downspout Planters
- Green Roofs

ADVANTAGES

- Transports stormwater
- Filters stormwater
- Infiltrates stormwater
- Aesthetically pleasing
- Creates wildlife habitat

DISADVANTAGES

- Maintenance including sediment and trash removal
- High flow can cause erosion
- Hazard for vehicles

STORMWATER PLANTERS

NATIVE PLANTS

A stormwater planter is planted with a variety of grasses, wildflowers, and woody plants that are adapted to the soil, precipitation, climate, and other site conditions.

CURB CUT

This curb cut and concrete flow pad are designed to help redirect stormwater runoff to the rain garden system and out of the storm drain.

CONCRETE WALL Concrete walls are installed

to match the existing curb. These walls create the frame for the stormwater planter and continue to function as a curb.

INLET This is the area where stormwater enters. The inlet is often lined with stone to slow water flow and prevent erosion.

SUBGRADE

Stormwater planter systems are unique because of their subgrade structure. This structure is layered with bioretention media, choker course, compact aggregate, and soil separation fabric.

.....

ADVANTAGES

- Combines settling with physical filtering and absorption processes
- Provides very high pollutant removal efficiencies
- More aesthetically pleasing and can be incorporated into the landscapes of most streetscapes
- Provided wildlife habitat
- Sequesters carbon
- Produces oxygen

DISADVANTAGES

- Requires maintenance (weeding, pruning, mulching)
- Collects trash
- Can release nutrients from bioretention soil mix
- May not be aesthetically appealing to everyone
- Can be expensive due to curbing and sidewalk removal
- Utilities can be a problem to work around
- Possible tripping hazard

TREE FILTER BOXES IN A STREETSCAPE

ADVANTAGES

- Easy to incorporate into streetscapes
- Provides shading and helps with heat island effect
- Enhance aesthetics
- Provided wildlife habitat
- Sequesters carbon
- Produces oxygen

DISADVANTAGES

- Can be expensive
- Tree filter box has little storage capacity unless incorporated into an enhanced tree pit system
- Maintenance trees need pruning
- Wildlife habitat too many birds; can stimulate local car wash business

Downspout Planters

GREEN ROOFS

FUNCTIONS

- Improves stormwater management
- Improves air quality
- Temperature regulation (moderation of Urban Heat Island Effect)
- Carbon dioxide/oxygen exchange
- Increased urban wildlife habitat
- Great for new construction

Modular System Specifications

DISADVANTAGES

- Very expensive
- Minimal stormwater management (up to ½ inch of rain)
- Very heavy and hard to retrofit on existing roof
- Facility managers tend to not be very supportive – "roof will leak"
- Did I mention very expensive

DISADVANTAGES

- Very expensive
- Minimal stormwater management (up to ½ inch of rain)
- Very heavy and hard to retrofit on existing roof
- Facility managers tend to not be very supportive "roof will leak"
- Did I mention very expensive

What can you do?

- Share the knowledge (youth, adults, businesses, municipalities)
- Implement existing plans to reduce impervious cover (Regional Stormwater Management Plans, Watershed Restoration Plans, Impervious Cover Reduction Action Plans, or Green Infrastructure Feasibility Studies)
- Enhance existing plans by adding new opportunities
- Construct demonstration projects
- Build partnerships

IMPERVIOUS COVER ASSESSMENTS (ICAS)

Impervious Cover Assessment

- Scare the hell out of the municipality
- Analysis completed by watershed and by municipality
- Use 2012 Land Use data to determine impervious cover
- Calculate runoff volumes for water quality, 2, 10 and 100 year design storm and annual rainfall
- Contain three concept designs

Watershed	Total Area (ac)	Impervious Cover (ac)	%
Branchport Creek	1,258	436	35.3%
Whale Pond Brook	596	156	26.2%
Total	1,854	592	32.3%

Subwatershe d	NJ Water Quality Storm (MGal)	Annual Rainfall of 44'' (MGal)	2-Year Design Storm (3.3") (MGal)	10-Year Design Storm (5.0") (MGal)	100-Year Design Storm (8.2") (MGal)
Branchport Creek	15	521	40	62	105
Whale Pond Brook	5	186	14	22	38
Total	20	707	55	84	143

WE LOOK HERE FIRST:

- ✓ Schools
- ✓ Houses of Worship
- ✓ Libraries
- ✓ Municipal Building
- ✓ Public Works
- ✓ Firehouses
- ✓Post Offices
- ✓Elks or Moose Lodge
- ✓ Parks/ Recreational Fields

- 20 to 40 sites are entered into a PowerPoint
- Site visits are conducted

IMPERVIOUS COVER REDUCTION ACTION PLAN

Impervious Cover Reduction Action Plan

- A comprehensive document with many opportunities for green infrastructure
- A living document
- Shovel ready projects
- Projects for all ages (youth to seniors)
- Provides mitigation opportunities for developers
- Site level analysis

WEST LONG BRANCH BOROUGH: GREEN INFRASTRUCTURE SITES

SITES WITHIN THE BRNACHPORT CREEK SUBWATERSHED:

- 1. Frank Antonides Elementary School
- 2. Lutheran Church Reformation
- 3. Old First United Methodist Church
- 4. Saint Jerome's Catholic Church and School
- 5. Shore Regional High School
- 6. Sovereign Bank
- 7. West Long Branch Community Center
- 8. West Long Branch Public School

FRANK ANTONIDES ELEMENTARY SCHOOL

Subwatershed:	Branchport Creek
Site Area:	107,870 sq. ft.
Address:	198-208 Wall Street West Long Branch, NJ 07764
Block and Lot:	Block 20, Lot 13, 15

Parking spots can be replaced with pervious pavement to capture and infiltrate parking lot and roof runoff. A cistern can be installed adjacent to the building to harvest rainwater that can be used to conduct car wash fundraisers. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervious Cover Existing Loads from Impervious Cover (lbs/yr)		Runoff Volume from Impervious Cover (Mgal)				
%	sq. ft.	TP	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
56	60,568	2.9	30.6	278.1	0.047	1.66

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/vr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavements	0.238	40	18,057	0.49	2,340	\$58,500
Rainwater harvesting systems	0.036	6	1,000	0.08	1,000 (gal)	\$2,000

GREEN INFRASTRUCTURE RECOMMENDATIONS

Frank Antonides Elementary School

disconnected downspouts
pervious pavements
rainwater harvesting
drainage areas
property line
2012 Aerial: NJOIT, OGIS
25' 50'

West Long Branch Borough

West Long Branch Borough

GREEN INFRASTRUCTURE FEASIBILITY STUDIES

Green Infrastructure Feasibility Study

- A high-end visual presentation of opportunities
- Provides green infrastructure overview
- Incorporates ICA and RAP information
- User-friendly format

0'	50'	100'
_	and the second se	

100 Lakeside Drive Marlton, NJ 08053

BARTON RUN SWIM CLUB

Stormwater is currently directed to an existing catch basin. Installing rain gardens in the parking lot islands can capture, treat, and infiltrate stormwater runoff from the parking lot. Replacing parking spaces with porous pavement can capture and infiltrate runoff from the other side of the parking lot. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervious C	Existing Loads from Impervious Cover (Ibs/yr)			Runoff Volume from Impervious Cover (Mgal			er (Mgal)		
%	sq. ft.	TP	TN	TSS	From the 1.25" Water Quality Storm		For Rain	For an Annual Rainfall of 44"	
30	51,770	2.5	26.1	237.7	0.040		1.42		
Recommended Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm) Peak I Reduction (cu. ft		Peak Discharge Reduction Potential (cu. ft./second)	Estim Size (s	ated sq. ft.)	Estimated Cost	
Bioretention systems	0.288	48	21,834		0.82	2,765		\$13,825	
Pervious pavement	0.352	59	26,651		1.00	2,410		\$60,250	

CURRENT CONDITION

BARTON RUN SWIM CLUB

100 Lakeside Drive Marlton, NJ 08053

CONCEPT DESIGN

BARTON RUN SWIM CLUB

100 Lakeside Drive Marlton, NJ 08053

HOW DO YOU IDENTIFY OPPORTUNITIES?

Help identify project sites but what makes a good site?

- Sites with impervious surfaces that are directly connected
- Sites with a lawn area that can be converts to accept stormwater runoff
- Sites with highly visibility good educational opportunities
- Sites in impaired watersheds
- Sites on municipal owned land/public land
- Sites that provide partnership opportunities

Let's get started! Download aerial photograph of "Look Here First Sites"?

- Go to Google or Bing Maps
- Type in address
- Aerial or birds eye view
- "Snip It"
- Insert into Powerpoint
- "Crop It"

- Schools
- Churches
- Libraries
- Municipal Building
- Public Works
- Firehouses
- Post Offices
- Elks or Moose Lodge
- Parks/ Rec Fields

Other Questions

- Do the soils infiltrate?
- Who own the property? Will they be open to installing stormwater management measures?
- Are there potential partners to help with the project?
- Do we need permits for altering this site with stormwater best management practices?
- Does the building have a basement?
- Can we lose parking spaces?
- Who will maintain the BMPs?
- Is the project a high priority?

Site Visits
What are we looking for during our site visit?

- 1. What are sources of stormwater and where does it flow?
- 2. What is the direction and relative slope of site?
- 3. Where are impervious surfaces on the site?
- 4. What is the condition of the paved areas?
- 5. Are impervious surfaces directly connected?
- 6. Are there opportunities to disconnect?
- 7. Are there stormwater catch basins?

What are we looking for during our site visit (cont'd)?

- 9. Is there evidence of ponding water on site?
- 10. Where are the utilities on the site?
- 11. Are there pedestrian safety issues?

WHAT SHOULD YOU BRING:

Aerial photo Pencil

Tape measure/Wheel Camera

Green Infrastructure CHECKLIST Green Infrastructure Manual Green Infrastructure Brochure

LET'S DO AN EXERCISE

Mountain View Plaza 856 U.S. Highway 206, Hillsborough, NJ

Fitt 'p' Firm

ICG Home Loans Rum Cake Fairy Cakes

Kramer Portraits

Elegant Spa

856 U.S. 206

206

Joe's Pizza & Restaurant

Google

Mountain View Plaza 856 U.S. Highway 206, Hillsborough, NJ

Mountain View Plaza 856 U.S. Highway 206, Hillsborough, NJ

Google

GREEN INFRASTRUCTURE RECOMMENDATIONS

Mountain View Plaza

- disconnected downspouts
 - pervious pavements
 - bioretention / rain gardens
- drainage areas
- [] property line

2012 Aerial: NJOIT, OGIS

MOUNTAIN VIEW PLAZA

Subwatershed:	Pike Run
Site Area:	503,957 sq. ft.
Address:	856 US Highway 206 Hillsborough, NJ 08844
Block and Lot:	Block 177, Lot 24.02

Several rain gardens can capture, treat, and infiltrate stormwater. Pervious pavement can infiltrate additional runoff. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervious CoverExisting Loads from Impervious Cover (lbs/yr)Re		Runoff Volume from In	Runoff Volume from Impervious Cover (Mgal)			
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
38	190,333	9.2	96.1	873.9	0.148	5.22

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.845	141	62,570	2.35	8,065	\$40,325
Pervious pavements	0.605	101	44,805	1.68	3,860	\$96,500

RESOURCES FOR YOU!

RUTGERS New Jersey Agricultural Experiment Station

Water Resources Program

HOME PAGE

About the Program

Staff

Projects & Programs

Recent Presentations

Water Pages

Fact Sheets

E-learning Tools

Useful Links

Connect With Us

💟 f

Our green infrastructure initiative in urban centers focuses on capturing stormwater with cost-effective practices before it enters the combined sewer systems.

.

About Us

Rutgers Cooperative Extension Water Resources Program

G.H. Cook Campus 14 College Farm Road New Brunswick, NJ 08901

www.water.rutgers.edu

~Creating Solutions for Water Resources Issues in New Jersey~

> Our mission is to identify and address community water resources issues using sustainable and practical science-based solutions.

News

- In the News October 3, 2017
- SEBS/NJAES Newsroom

Go

Search This Site

RUTGERS New Jersey Agricultural Experiment Station

Water Resources Program

Projects & Programs Municipal/Community Agricultural Watershed Planning & Implementation Training Rain Gardens & Rain Green Infrastructure Program Barrels Keep the Rain from the Drain ~ Impervious Watershed Planning & Cover Reduction Program Implementation

Agricultural Watershed Planning & Implementation

Watershed Restoration & Protection Plan for Assiscunk Creek, Burlington County, NJ

Municipal Stormwater Management

- Assiscunk Creek Watershed Agricultural Mini-Grant Program
- Biofilter Wetland at Harrow Run, Water Quality Evaluation of Pollutant Removal Efficiency from a Tailwater Recovery System
- Watershed Restoration Plan for the Upper Cohansey River Watershed
- Upper Cohansey River Watershed Agricultural Mini-Grant Program
- Watershed Restoration Plan for the Upper Salem River Watershed
- Upper Salem River Watershed Agricultural Mini-Grant Program

Green Infrastructure Program

- Camden Green Infrastructure Initiative
- · Fixing Flooding: One Community at a Time Innovative Solutions using Green Infrastructure Conference
- · Green Infrastructure Education and Implementation Program
- Green Infrastructure Guidance Manual for New Jersey
- Green Infrastructure Solutions for New Jersey Conference

Useful Links

Water Pages

Fact Sheets

E-learning Tools

HOME PAGE

Staff

About the Program

Projects & Programs

Recent Presentations

Connect With Us

Search Rutgers

Keep the Rain from the Drain ~ Impervious Cover Reduction Program

- Impervious Cover Assessments and Impervious Cover Reduction Action Plans for Coastal Communities
- National Fish and Wildlife Foundation ~ Incorporating Green Infrastructure Resiliency in the Raritan River Basin
- Impervious Cover Assessments, Impervious Cover Reduction Action Plans, and Green Infrastructure Reduction Action Plans for New Jersey Future's Mainstreaming Green Infrastructure Program
- <u>Salem County and Cumberland County, NJ ~ Impervious Cover Assessments and Impervious Cover</u> <u>Reduction Action Plans</u>
- William Penn Foundation Technical Support Program for Municipalities and Watershed Partners

HUNTERDON COUNTY		NEW JERSEY HIG	NEW JERSEY HIGHLANDS WATERSHED CLUSTER		
Delaware Twp	Franklin Twp	Alpha	Lopatcong		
• ICA • RAP	• ICA • RAP	• ICA • RAP	• ICA • RAP		
RAP web map	RAP web map	RAP web map	RAP web map		
East Amwell Twp	Raritan Twp	Feasibility Study	Feasibility Study		
 ICA RAP RAP web map Flemington Boro	ICA RAP RAP web map Readington Twp ICA	Branchville ICA RAP RAP web map 	Mount Arlington ICA RAP RAP web map 		
• ICA		Feasibility Study	Feasibility Study		
• RAP • RAP web map	• RAP • RAP web map	Greenwich • ICA	Mount Olive ICA 		
MIDDLESEX COUNTY		RAP RAP web map	RAP RAP web map		
Dunellen Boro	North Brunswick Twp	Feasibility Study	Feasibility Study		
• ICA • RAP • RAP web map	 ICA RAP RAP web map 		11		

QUESTIONS?

The great aim of education is not knowledge but action.

- Herbert Spencer

